{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.499997604887973 0.1147 0.0479 0.0668 0.0922 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[31] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 0.660200 6.444700 -3.299700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 0.451400 5.511400 -2.356000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -0.690000 4.711600 -2.797800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -1.090700 5.248000 -4.035700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -0.257000 6.296800 -4.310100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 6 43 -0.238353 6.977671 -5.173852 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 13.790 2.000 7 25 -2.124100 4.691800 -4.665900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 3.788 1.050 8 2 -2.752700 3.660300 -4.144900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 -2.406500 3.122600 -2.989200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.375 1.050 10 2 -1.387700 3.607600 -2.285200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 25 -1.028500 3.041300 -1.075400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 12 3 -0.631600 1.637100 -1.248400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 3 0.118900 1.156600 0.002100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -0.696000 1.545200 1.208700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 -1.700000 2.451900 1.169800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 31 -2.208300 2.554200 2.398600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 17 2 -1.559800 1.748200 3.199500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 41 -1.752900 1.620300 4.254400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 19 25 -0.606400 1.101100 2.488500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 20 43 0.150518 0.349906 2.758282 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.976 0.900 21 3 -2.111100 3.178600 -0.086400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 57 1.357800 5.300500 -0.890600 900 " " X " " 9 0.00000 0.00000 "UNK " " " " " 17 0 0 1 "" 0 <> <> 23 41 1.433100 7.198400 -3.267800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 24 41 -3.586000 3.235400 -4.684600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 25 41 -1.528733 1.018133 -1.396833 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 0.025227 1.547173 -2.126176 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 0.239873 0.064086 -0.040080 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 1.109176 1.633890 0.041445 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 -2.276033 4.244193 0.131107 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 -3.035086 2.739657 -0.490849 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 44 -3.043736 3.242965 2.592633 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.125 0.900 ::: } m_bond[68] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 5 1 1 1 2 1 2 2 1 1 3 1 23 1 1 1 4 2 1 2 1 1 5 2 3 1 1 1 6 2 22 1 1 1 7 3 2 1 1 1 8 3 10 2 1 1 9 3 4 1 1 1 10 4 3 1 1 1 11 4 5 1 1 1 12 4 7 2 1 1 13 5 1 1 1 1 14 5 4 1 1 1 15 5 6 1 1 1 16 6 5 1 1 1 17 7 4 2 1 1 18 7 8 1 1 1 19 8 7 1 1 1 20 8 9 2 1 1 21 8 24 1 1 1 22 9 8 2 1 1 23 9 10 1 1 1 24 10 3 2 1 1 25 10 9 1 1 1 26 10 11 1 1 1 27 11 10 1 1 1 28 11 21 1 1 1 29 11 12 1 1 1 30 12 11 1 1 1 31 12 13 1 1 1 32 12 25 1 1 1 33 12 26 1 1 1 34 13 12 1 1 1 35 13 14 1 1 1 36 13 27 1 1 1 37 13 28 1 1 1 38 14 13 1 1 1 39 14 19 1 1 1 40 14 15 2 1 1 41 15 14 2 1 1 42 15 16 1 1 1 43 15 21 1 1 1 44 16 15 1 1 1 45 16 17 2 1 1 46 16 31 1 1 1 47 17 16 2 1 1 48 17 18 1 1 1 49 17 19 1 1 1 50 18 17 1 1 1 51 19 14 1 1 1 52 19 17 1 1 1 53 19 20 1 1 1 54 20 19 1 1 1 55 21 11 1 1 1 56 21 15 1 1 1 57 21 29 1 1 1 58 21 30 1 1 1 59 22 2 1 1 1 60 23 1 1 1 1 61 24 8 1 1 1 62 25 12 1 1 1 63 26 12 1 1 1 64 27 13 1 1 1 65 28 13 1 1 1 66 29 21 1 1 1 67 30 21 1 1 1 68 31 16 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 0.499997604887973 0.1147 0.0479 0.0668 0.0922 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[31] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -3.773700 3.761200 -0.071400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -2.696200 3.087900 0.365600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -1.947900 2.672500 -0.819700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -2.669600 3.152200 -1.928600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -3.768300 3.806100 -1.443200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 6 43 -4.579280 4.320205 -1.979864 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 13.790 2.000 7 25 -2.197900 2.906600 -3.150000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 3.788 1.050 8 2 -1.081700 2.230400 -3.315600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 -0.370600 1.767500 -2.303300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.375 1.050 10 2 -0.762700 1.956800 -1.046700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 25 -0.017900 1.465300 0.010100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 12 3 0.084600 0.000800 -0.053900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 3 0.562800 -0.541300 1.300800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 1.767600 0.261200 1.719900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 2.106800 1.445300 1.161200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 31 3.217200 1.878700 1.759400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 17 2 3.580700 1.011600 2.669100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 41 4.444200 1.099200 3.311800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 19 25 2.696000 -0.013300 2.672700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 20 43 2.619731 -0.937095 3.264972 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.976 0.900 21 3 1.311200 2.097900 0.058300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 57 -2.273600 2.772400 2.019600 900 " " X " " 9 0.00000 0.00000 "UNK " " " " " 17 0 0 1 "" 0 <> <> 23 41 -4.530400 4.200700 0.561500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 24 41 -0.730000 2.050100 -4.320700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 25 41 -0.901212 -0.425723 -0.291076 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 0.804458 -0.282579 -0.835885 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 -0.242427 -0.435969 2.042767 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 0.829344 -1.603487 1.197292 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 1.819324 1.957471 -0.907148 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 1.198350 3.173302 0.260227 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 44 3.670193 2.833188 1.453213 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.125 0.900 ::: } m_bond[68] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 5 1 1 1 2 1 2 2 1 1 3 1 23 1 1 1 4 2 1 2 1 1 5 2 3 1 1 1 6 2 22 1 1 1 7 3 2 1 1 1 8 3 10 2 1 1 9 3 4 1 1 1 10 4 3 1 1 1 11 4 5 1 1 1 12 4 7 2 1 1 13 5 1 1 1 1 14 5 4 1 1 1 15 5 6 1 1 1 16 6 5 1 1 1 17 7 4 2 1 1 18 7 8 1 1 1 19 8 7 1 1 1 20 8 9 2 1 1 21 8 24 1 1 1 22 9 8 2 1 1 23 9 10 1 1 1 24 10 3 2 1 1 25 10 9 1 1 1 26 10 11 1 1 1 27 11 10 1 1 1 28 11 21 1 1 1 29 11 12 1 1 1 30 12 11 1 1 1 31 12 13 1 1 1 32 12 25 1 1 1 33 12 26 1 1 1 34 13 12 1 1 1 35 13 14 1 1 1 36 13 27 1 1 1 37 13 28 1 1 1 38 14 13 1 1 1 39 14 19 1 1 1 40 14 15 2 1 1 41 15 14 2 1 1 42 15 16 1 1 1 43 15 21 1 1 1 44 16 15 1 1 1 45 16 17 2 1 1 46 16 31 1 1 1 47 17 16 2 1 1 48 17 18 1 1 1 49 17 19 1 1 1 50 18 17 1 1 1 51 19 14 1 1 1 52 19 17 1 1 1 53 19 20 1 1 1 54 20 19 1 1 1 55 21 11 1 1 1 56 21 15 1 1 1 57 21 29 1 1 1 58 21 30 1 1 1 59 22 2 1 1 1 60 23 1 1 1 1 61 24 8 1 1 1 62 25 12 1 1 1 63 26 12 1 1 1 64 27 13 1 1 1 65 28 13 1 1 1 66 29 21 1 1 1 67 30 21 1 1 1 68 31 16 1 1 1 ::: } }