{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0002 0.0002 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[40] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 0.051500 4.234100 0.025100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -1.165100 3.564000 0.032700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -1.209700 2.187000 0.031100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -0.017800 1.463900 0.010100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 1.218300 2.149700 0.002000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 1.232300 3.545700 0.009700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 2 2.453200 1.365300 -0.014000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 25 2.398500 0.066800 -0.020400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 9 25 1.193800 -0.636800 -0.012700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 10 2 0.002100 -0.004100 0.002000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 15 -1.037500 -0.638900 0.008100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.344 1.000 12 3 1.223500 -2.101500 -0.020400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 1.219800 -2.596500 -1.443800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 25 2.239800 -2.836400 -2.218900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.029 2.000 15 2 2.099200 -3.285500 -3.483500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 3.096800 -3.592500 -4.435400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 2 2.759400 -4.032400 -5.677700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 1.434300 -4.195100 -6.057600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 0.428600 -3.905000 -5.155000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 0.759100 -3.460500 -3.897800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 49 -0.144300 -2.977400 -2.448200 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 22 3 3.851500 -4.350400 -6.666300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 56 3.281000 -4.781400 -7.868800 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 24 56 4.618600 -3.203700 -6.898600 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 25 56 4.668700 -5.361300 -6.149100 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 26 3 3.788800 2.063200 -0.023400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 2 4.891900 1.036600 -0.039800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 28 15 4.621200 -0.141000 -0.043500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 29 18 6.175100 1.430300 -0.050400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 0 1 "" 0 3.609 0.450 30 41 0.064700 5.314000 0.031100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 -2.085900 4.128300 0.044900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 -2.159200 1.672500 0.041600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 2.171400 4.079100 0.003200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 2.133925 -2.452434 0.487509 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 0.338102 -2.488984 0.504887 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 4.138300 -3.476700 -4.174100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 1.191200 -4.545200 -7.049900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -0.607300 -4.026100 -5.435500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 3.864786 2.697417 -0.918941 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 3.882516 2.687775 0.877224 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> ::: } m_bond[86] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 30 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 31 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 32 1 1 1 10 4 3 1 1 1 11 4 10 1 1 1 12 4 5 2 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 7 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 33 1 1 1 19 7 5 1 1 1 20 7 8 2 1 1 21 7 26 1 1 1 22 8 7 2 1 1 23 8 9 1 1 1 24 9 8 1 1 1 25 9 10 1 1 1 26 9 12 1 1 1 27 10 4 1 1 1 28 10 9 1 1 1 29 10 11 2 1 1 30 11 10 2 1 1 31 12 9 1 1 1 32 12 13 1 1 1 33 12 34 1 1 1 34 12 35 1 1 1 35 13 12 1 1 1 36 13 21 1 1 1 37 13 14 2 1 1 38 14 13 2 1 1 39 14 15 1 1 1 40 15 14 1 1 1 41 15 20 2 1 1 42 15 16 1 1 1 43 16 15 1 1 1 44 16 17 2 1 1 45 16 36 1 1 1 46 17 16 2 1 1 47 17 18 1 1 1 48 17 22 1 1 1 49 18 17 1 1 1 50 18 19 2 1 1 51 18 37 1 1 1 52 19 18 2 1 1 53 19 20 1 1 1 54 19 38 1 1 1 55 20 15 2 1 1 56 20 19 1 1 1 57 20 21 1 1 1 58 21 13 1 1 1 59 21 20 1 1 1 60 22 17 1 1 1 61 22 23 1 1 1 62 22 24 1 1 1 63 22 25 1 1 1 64 23 22 1 1 1 65 24 22 1 1 1 66 25 22 1 1 1 67 26 7 1 1 1 68 26 27 1 1 1 69 26 39 1 1 1 70 26 40 1 1 1 71 27 26 1 1 1 72 27 28 2 1 1 73 27 29 1 1 1 74 28 27 2 1 1 75 29 27 1 1 1 76 30 1 1 1 1 77 31 2 1 1 1 78 32 3 1 1 1 79 33 6 1 1 1 80 34 12 1 1 1 81 35 12 1 1 1 82 36 16 1 1 1 83 37 18 1 1 1 84 38 19 1 1 1 85 39 26 1 1 1 86 40 26 1 1 1 ::: } }