{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.999999999999999 0.0009 0.0008 0.0001 -0.0000 2 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[63] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 1.426300 1.662600 7.742700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 0.954500 2.409200 6.493400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 0.904700 1.463100 5.285500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 31 -0.523300 1.447400 4.859400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" -1.656 2.000 5 2 -1.190600 0.817200 3.875100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -2.515400 1.012600 3.736200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 49 -2.824400 2.143100 5.082600 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 "" <> <> 8 2 -1.192900 2.239200 5.668000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 25 -0.439100 2.846100 6.648200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 10 3 -0.457200 -0.098200 2.928900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 49 -0.460100 -1.781500 3.594200 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 "" <> <> 12 2 -1.718300 -2.503500 2.594200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 31 -1.490400 -2.745400 1.333000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 14 3 -0.420900 -2.030800 0.631700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 3 -0.988300 -1.371000 -0.626800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 3 0.128600 -0.624700 -1.359100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 1.228900 -1.612300 -1.752900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 3 1.796300 -2.272000 -0.494500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 3 0.679400 -3.018300 0.237900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 25 -2.941100 -2.812200 3.143700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 21 3 -3.197200 -2.540500 4.560300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 3 -2.687000 -3.710300 5.404300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 3 -2.954400 -3.426500 6.883800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 3 -4.458400 -3.254700 7.106400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 25 3 -4.968500 -2.084900 6.262500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 3 -4.701100 -2.368700 4.783000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 3 1.867200 3.602800 6.204800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 28 41 2.470464 1.344256 7.607133 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 0.791401 0.778796 7.903307 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 1.356227 2.327993 8.615822 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 1.559467 1.848989 4.490283 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 1.246882 0.462685 5.588951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -3.201100 0.599500 3.011300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 43 -0.710163 3.545141 7.453101 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.945 2.000 35 41 -0.957612 -0.090216 1.949347 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 0.580278 0.248659 2.813451 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -0.029882 -1.271280 1.324690 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -1.408179 -2.143240 -1.288122 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -1.779383 -0.661028 -0.343731 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -0.279337 -0.150329 -2.263843 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 0.548505 0.147520 -0.697771 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 0.808943 -2.384529 -2.414186 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 2.031908 -1.075775 -2.279511 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 2.587347 -2.981991 -0.777619 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 2.216240 -1.499772 0.166798 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 1.087359 -3.492613 1.142663 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 0.259518 -3.790566 -0.423390 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 43 -3.726570 -3.263057 2.519389 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 9.929 0.700 49 41 -2.659701 -1.615253 4.815277 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -3.209239 -4.631795 5.107462 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -1.605747 -3.833841 5.244207 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -2.587610 -4.267502 7.490579 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -2.432156 -2.505007 7.180637 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -4.980604 -4.176188 6.809477 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -4.650718 -3.050786 8.170088 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -6.049749 -1.961352 6.422611 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -4.446246 -1.163421 6.559362 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 -5.067884 -1.527704 4.176209 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 -5.223366 -3.290189 4.486191 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 1.512680 4.126218 5.304606 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 41 2.895198 3.247172 6.041247 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 62 41 1.849859 4.293086 7.061074 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 63 44 -2.101209 -3.485958 0.795891 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 9.929 0.700 ::: } m_bond[132] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 28 1 3 1 29 1 4 1 30 1 5 2 1 1 6 2 9 1 7 2 3 1 8 2 27 1 9 3 2 1 10 3 4 1 11 3 31 1 12 3 32 1 13 4 3 1 14 4 8 2 15 4 5 1 16 5 4 1 17 5 6 2 18 5 10 1 19 6 5 2 20 6 7 1 21 6 33 1 22 7 6 1 23 7 8 1 24 8 4 2 25 8 7 1 26 8 9 1 27 9 2 1 28 9 8 1 29 9 34 1 30 10 5 1 31 10 11 1 32 10 35 1 33 10 36 1 34 11 10 1 35 11 12 1 36 12 11 1 37 12 13 2 38 12 20 1 39 13 12 2 40 13 14 1 41 13 63 1 42 14 13 1 43 14 19 1 44 14 15 1 45 14 37 1 46 15 14 1 47 15 16 1 48 15 38 1 49 15 39 1 50 16 15 1 51 16 17 1 52 16 40 1 53 16 41 1 54 17 16 1 55 17 18 1 56 17 42 1 57 17 43 1 58 18 17 1 59 18 19 1 60 18 44 1 61 18 45 1 62 19 14 1 63 19 18 1 64 19 46 1 65 19 47 1 66 20 12 1 67 20 21 1 68 20 48 1 69 21 20 1 70 21 26 1 71 21 22 1 72 21 49 1 73 22 21 1 74 22 23 1 75 22 50 1 76 22 51 1 77 23 22 1 78 23 24 1 79 23 52 1 80 23 53 1 81 24 23 1 82 24 25 1 83 24 54 1 84 24 55 1 85 25 24 1 86 25 26 1 87 25 56 1 88 25 57 1 89 26 21 1 90 26 25 1 91 26 58 1 92 26 59 1 93 27 2 1 94 27 60 1 95 27 61 1 96 27 62 1 97 28 1 1 98 29 1 1 99 30 1 1 100 31 3 1 101 32 3 1 102 33 6 1 103 34 9 1 104 35 10 1 105 36 10 1 106 37 14 1 107 38 15 1 108 39 15 1 109 40 16 1 110 41 16 1 111 42 17 1 112 43 17 1 113 44 18 1 114 45 18 1 115 46 19 1 116 47 19 1 117 48 20 1 118 49 21 1 119 50 22 1 120 51 22 1 121 52 23 1 122 53 23 1 123 54 24 1 124 55 24 1 125 56 25 1 126 57 25 1 127 58 26 1 128 59 26 1 129 60 27 1 130 61 27 1 131 62 27 1 132 63 13 1 ::: } }