{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 4_S_17_2_5_32 0.0842 0.0740 0.0101 0.0828 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[47] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -1.036900 3.176600 -1.662500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -1.120400 1.729000 -1.174300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 -1.018400 0.780600 -2.370600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 0.029100 1.451000 -0.203600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 3 -0.007800 -0.017800 0.223300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 1.204000 -0.327100 1.064100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 2 2.438600 -0.609300 0.625300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 16 3.260300 -0.831100 1.668800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 9 2 2.603000 -0.704500 2.833600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 1.272500 -0.374000 2.526800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 0.359300 -0.190400 3.574600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 25 0.794400 -0.326200 4.823800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.330 0.700 13 2 2.060500 -0.633800 5.073700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 31 2.950400 -0.820200 4.112600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 15 25 2.466300 -0.764400 6.391100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 16 25 -0.960900 0.129800 3.315400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 -0.115300 2.330900 1.011200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 -1.297500 2.333700 1.726400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -1.430600 3.140700 2.840900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 -0.381400 3.946700 3.243200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 0.802500 3.947500 2.531700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 0.940400 3.134500 1.415700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 16 2.106200 3.129400 0.717200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 24 3 3.150400 3.982000 1.191500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 41 -1.110235 3.858406 -0.802406 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 -1.863381 3.376435 -2.360350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 -0.077054 3.335663 -2.175720 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 -2.080252 1.569959 -0.661085 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 -1.078437 -0.260153 -2.019561 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 -0.058554 0.939690 -2.883812 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 -1.844881 0.980462 -3.068442 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 0.990614 1.675628 -0.688403 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 -0.918997 -0.206324 0.809967 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 -0.007677 -0.659458 -0.670163 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 2.731500 -0.652800 -0.413300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 43 3.511229 -1.018906 6.622078 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.820 2.000 37 43 1.743747 -0.613645 7.206692 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.820 2.000 38 43 -1.666228 0.270899 4.147628 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.590 2.000 39 43 -1.305636 0.243383 2.277009 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.590 2.000 40 41 -2.118400 1.705100 1.414200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -2.355500 3.141400 3.398600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -0.487800 4.576200 4.114200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 1.621500 4.577400 2.846000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 4.030652 3.881132 0.539594 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 3.419962 3.695020 2.218622 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 2.804291 5.026081 1.181346 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 44 3.986880 -1.073303 4.380272 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.926 0.700 ::: } m_bond[98] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 25 1 1 1 3 1 26 1 1 1 4 1 27 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 28 1 1 1 9 3 2 1 1 1 10 3 29 1 1 1 11 3 30 1 1 1 12 3 31 1 1 1 13 4 2 1 1 1 14 4 5 1 1 1 15 4 17 1 1 1 16 4 32 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 33 1 1 1 20 5 34 1 1 1 21 6 5 1 1 1 22 6 10 1 1 1 23 6 7 2 1 1 24 7 6 2 1 1 25 7 8 1 1 1 26 7 35 1 1 1 27 8 7 1 1 1 28 8 9 1 1 1 29 9 8 1 1 1 30 9 14 2 1 1 31 9 10 1 1 1 32 10 6 1 1 1 33 10 9 1 1 1 34 10 11 2 1 1 35 11 10 2 1 1 36 11 12 1 1 1 37 11 16 1 1 1 38 12 11 1 1 1 39 12 13 2 1 1 40 13 12 2 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 14 9 2 1 1 44 14 13 1 1 1 45 14 47 1 1 1 46 15 13 1 1 1 47 15 36 1 1 1 48 15 37 1 1 1 49 16 11 1 1 1 50 16 38 1 1 1 51 16 39 1 1 1 52 17 4 1 1 1 53 17 22 2 1 1 54 17 18 1 1 1 55 18 17 1 1 1 56 18 19 2 1 1 57 18 40 1 1 1 58 19 18 2 1 1 59 19 20 1 1 1 60 19 41 1 1 1 61 20 19 1 1 1 62 20 21 2 1 1 63 20 42 1 1 1 64 21 20 2 1 1 65 21 22 1 1 1 66 21 43 1 1 1 67 22 17 2 1 1 68 22 21 1 1 1 69 22 23 1 1 1 70 23 22 1 1 1 71 23 24 1 1 1 72 24 23 1 1 1 73 24 44 1 1 1 74 24 45 1 1 1 75 24 46 1 1 1 76 25 1 1 1 1 77 26 1 1 1 1 78 27 1 1 1 1 79 28 2 1 1 1 80 29 3 1 1 1 81 30 3 1 1 1 82 31 3 1 1 1 83 32 4 1 1 1 84 33 5 1 1 1 85 34 5 1 1 1 86 35 7 1 1 1 87 36 15 1 1 1 88 37 15 1 1 1 89 38 16 1 1 1 90 39 16 1 1 1 91 40 18 1 1 1 92 41 19 1 1 1 93 42 20 1 1 1 94 43 21 1 1 1 95 44 24 1 1 1 96 45 24 1 1 1 97 46 24 1 1 1 98 47 14 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 4_R_17_2_5_32 0.0842 0.0740 0.0101 0.0828 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[47] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 4.599800 4.018700 1.301000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 3.183000 3.441100 1.314600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 2.547200 3.682100 2.685200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 2.342600 4.126000 0.235000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 3 2.921700 3.802500 -1.143700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 2.165300 4.568200 -2.198500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 2 1.185200 4.102300 -2.985100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 16 0.748700 5.076800 -3.805600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 9 2 1.421000 6.220400 -3.593900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 2.348000 5.974200 -2.567300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 3.193200 7.012800 -2.151900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 25 3.075000 8.198700 -2.741800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.330 0.700 13 2 2.183300 8.393900 -3.704500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 31 1.372300 7.438100 -4.127600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 15 25 2.097700 9.646500 -4.288600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 16 25 4.123500 6.810300 -1.148800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 0.922400 3.627900 0.312800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 0.650800 2.283800 0.144100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -0.651700 1.826200 0.215700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 -1.686600 2.712900 0.450700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 -1.419700 4.056800 0.625800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -0.113200 4.518600 0.554300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 16 0.151300 5.841100 0.721000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 24 3 -0.964100 6.699900 0.966400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 41 5.056933 3.845441 0.315601 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 5.203968 3.526257 2.077197 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 4.557002 5.099625 1.500425 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 3.225705 2.360173 1.115166 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 1.528633 3.266859 2.694999 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 2.504457 4.763034 2.884588 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 3.151423 3.189666 3.461359 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 2.343106 5.214320 0.394871 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 3.983079 4.090010 -1.172221 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 2.828814 2.723512 -1.336463 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 0.801800 3.092900 -2.964200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 43 1.365772 9.831431 -5.088651 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.820 2.000 37 43 2.761630 10.456600 -3.952542 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.820 2.000 38 43 4.780113 7.634429 -0.833092 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.590 2.000 39 43 4.206825 5.825108 -0.666666 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.590 2.000 40 41 1.456800 1.590000 -0.044400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -0.861900 0.775200 0.083500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -2.703800 2.353700 0.501800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -2.227800 4.748300 0.813700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -0.611229 7.735399 1.081392 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -1.475672 6.382467 1.887014 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -1.663983 6.642898 0.119692 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 44 0.652325 7.658784 -4.929432 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.926 0.700 ::: } m_bond[98] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 25 1 1 1 3 1 26 1 1 1 4 1 27 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 28 1 1 1 9 3 2 1 1 1 10 3 29 1 1 1 11 3 30 1 1 1 12 3 31 1 1 1 13 4 2 1 1 1 14 4 5 1 1 1 15 4 17 1 1 1 16 4 32 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 33 1 1 1 20 5 34 1 1 1 21 6 5 1 1 1 22 6 10 1 1 1 23 6 7 2 1 1 24 7 6 2 1 1 25 7 8 1 1 1 26 7 35 1 1 1 27 8 7 1 1 1 28 8 9 1 1 1 29 9 8 1 1 1 30 9 14 2 1 1 31 9 10 1 1 1 32 10 6 1 1 1 33 10 9 1 1 1 34 10 11 2 1 1 35 11 10 2 1 1 36 11 12 1 1 1 37 11 16 1 1 1 38 12 11 1 1 1 39 12 13 2 1 1 40 13 12 2 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 14 9 2 1 1 44 14 13 1 1 1 45 14 47 1 1 1 46 15 13 1 1 1 47 15 36 1 1 1 48 15 37 1 1 1 49 16 11 1 1 1 50 16 38 1 1 1 51 16 39 1 1 1 52 17 4 1 1 1 53 17 22 2 1 1 54 17 18 1 1 1 55 18 17 1 1 1 56 18 19 2 1 1 57 18 40 1 1 1 58 19 18 2 1 1 59 19 20 1 1 1 60 19 41 1 1 1 61 20 19 1 1 1 62 20 21 2 1 1 63 20 42 1 1 1 64 21 20 2 1 1 65 21 22 1 1 1 66 21 43 1 1 1 67 22 17 2 1 1 68 22 21 1 1 1 69 22 23 1 1 1 70 23 22 1 1 1 71 23 24 1 1 1 72 24 23 1 1 1 73 24 44 1 1 1 74 24 45 1 1 1 75 24 46 1 1 1 76 25 1 1 1 1 77 26 1 1 1 1 78 27 1 1 1 1 79 28 2 1 1 1 80 29 3 1 1 1 81 30 3 1 1 1 82 31 3 1 1 1 83 32 4 1 1 1 84 33 5 1 1 1 85 34 5 1 1 1 86 35 7 1 1 1 87 36 15 1 1 1 88 37 15 1 1 1 89 38 16 1 1 1 90 39 16 1 1 1 91 40 18 1 1 1 92 41 19 1 1 1 93 42 20 1 1 1 94 43 21 1 1 1 95 44 24 1 1 1 96 45 24 1 1 1 97 46 24 1 1 1 98 47 14 1 1 1 ::: } }