{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.5378 0.0000 0.5378 0.4714 0 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[60] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -2.982200 3.303500 -0.433600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -1.768600 2.672800 -0.636400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -1.711300 1.294800 -0.727100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -2.868300 0.546000 -0.621300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 -4.083300 1.176100 -0.413500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 -4.139400 2.556800 -0.322300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 56 -5.214200 0.444900 -0.304800 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 8 3 -0.387700 0.608800 -0.947700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 0.226200 0.304300 0.347200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 10 2 0.047000 -0.854200 1.060700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -0.691200 -2.014700 0.840800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -0.670400 -3.023500 1.759800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 0.086300 -2.910000 2.926900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 0.827300 -1.770600 3.169200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 0.813900 -0.728900 2.234600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 1.457500 0.579200 2.167200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 25 1.093900 1.145000 1.051800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.860 2.000 18 25 0.093700 -3.956700 3.856900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.584 1.000 19 2 0.208300 -3.680300 5.211300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 0.331500 -4.714000 6.135000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 0.449000 -4.383900 7.481600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 25 0.428600 -3.100300 7.836500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 4.714 1.050 23 2 0.304800 -2.150500 6.932100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 25 0.196500 -2.421900 5.647500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 6.382 1.050 25 25 0.579600 -5.376800 8.440300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.940 1.000 26 3 0.342700 -6.153100 5.687900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 26 1.724600 -6.570300 5.415200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 5.156 1.040 28 26 1.774100 -7.956900 4.980400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 6.982 0.540 29 3 2.507000 -8.785500 5.946200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 3 2.414500 -10.256000 5.532400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 3 3.009100 -10.425300 4.131600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 3 2.259600 -9.515700 3.154200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 3 2.356600 -8.066700 3.636800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 41 -3.025700 4.380300 -0.362600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -0.864600 3.257400 -0.723600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -2.823900 -0.530500 -0.696600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -5.087400 3.049700 -0.164600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -0.547416 -0.325132 -1.506504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 0.277099 1.270659 -1.522143 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -1.281600 -2.116000 -0.057900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -1.245900 -3.919900 1.581700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 1.412200 -1.683700 4.072900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 2.120600 1.000900 2.908000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 43 0.008629 -4.998230 3.513421 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 13.029 2.000 45 41 0.292200 -1.119400 7.253000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 43 0.671933 -5.106846 9.502656 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.296 2.000 47 43 0.590890 -6.434562 8.138616 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.296 2.000 48 41 -0.081976 -6.786612 6.480562 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 -0.259197 -6.257572 4.773129 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 43 2.312600 -6.423100 6.221800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 3.562570 -8.476766 5.967537 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 2.067470 -8.658200 6.946504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 2.976015 -10.874330 6.248199 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 1.360095 -10.569340 5.525426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.074037 -10.150375 4.149643 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 2.906341 -11.473378 3.813838 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 2.709889 -9.601919 2.154297 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 1.203158 -9.818666 3.107922 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 1.806774 -7.412458 2.944225 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 3.412883 -7.761366 3.668998 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> ::: } m_bond[128] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 34 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 35 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 8 1 1 1 10 4 3 1 1 1 11 4 5 2 1 1 12 4 36 1 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 7 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 37 1 1 1 19 7 5 1 1 1 20 8 3 1 1 1 21 8 9 1 1 1 22 8 38 1 1 1 23 8 39 1 1 1 24 9 8 1 1 1 25 9 17 1 1 1 26 9 10 1 1 1 27 10 9 1 1 1 28 10 15 2 1 1 29 10 11 1 1 1 30 11 10 1 1 1 31 11 12 2 1 1 32 11 40 1 1 1 33 12 11 2 1 1 34 12 13 1 1 1 35 12 41 1 1 1 36 13 12 1 1 1 37 13 14 2 1 1 38 13 18 1 1 1 39 14 13 2 1 1 40 14 15 1 1 1 41 14 42 1 1 1 42 15 10 2 1 1 43 15 14 1 1 1 44 15 16 1 1 1 45 16 15 1 1 1 46 16 17 2 1 1 47 16 43 1 1 1 48 17 9 1 1 1 49 17 16 2 1 1 50 18 13 1 1 1 51 18 19 1 1 1 52 18 44 1 1 1 53 19 18 1 1 1 54 19 24 2 1 1 55 19 20 1 1 1 56 20 19 1 1 1 57 20 21 2 1 1 58 20 26 1 1 1 59 21 20 2 1 1 60 21 22 1 1 1 61 21 25 1 1 1 62 22 21 1 1 1 63 22 23 2 1 1 64 23 22 2 1 1 65 23 24 1 1 1 66 23 45 1 1 1 67 24 19 2 1 1 68 24 23 1 1 1 69 25 21 1 1 1 70 25 46 1 1 1 71 25 47 1 1 1 72 26 20 1 1 1 73 26 27 1 1 1 74 26 48 1 1 1 75 26 49 1 1 1 76 27 26 1 1 1 77 27 28 1 1 1 78 27 50 1 1 1 79 28 27 1 1 1 80 28 33 1 1 1 81 28 29 1 1 1 82 29 28 1 1 1 83 29 30 1 1 1 84 29 51 1 1 1 85 29 52 1 1 1 86 30 29 1 1 1 87 30 31 1 1 1 88 30 53 1 1 1 89 30 54 1 1 1 90 31 30 1 1 1 91 31 32 1 1 1 92 31 55 1 1 1 93 31 56 1 1 1 94 32 31 1 1 1 95 32 33 1 1 1 96 32 57 1 1 1 97 32 58 1 1 1 98 33 28 1 1 1 99 33 32 1 1 1 100 33 59 1 1 1 101 33 60 1 1 1 102 34 1 1 1 1 103 35 2 1 1 1 104 36 4 1 1 1 105 37 6 1 1 1 106 38 8 1 1 1 107 39 8 1 1 1 108 40 11 1 1 1 109 41 12 1 1 1 110 42 14 1 1 1 111 43 16 1 1 1 112 44 18 1 1 1 113 45 23 1 1 1 114 46 25 1 1 1 115 47 25 1 1 1 116 48 26 1 1 1 117 49 26 1 1 1 118 50 27 1 1 1 119 51 29 1 1 1 120 52 29 1 1 1 121 53 30 1 1 1 122 54 30 1 1 1 123 55 31 1 1 1 124 56 31 1 1 1 125 57 32 1 1 1 126 58 32 1 1 1 127 59 33 1 1 1 128 60 33 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.5672 0.4233 0.1440 0.4963 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[61] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -2.982200 3.303500 -0.433600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -1.768600 2.672800 -0.636400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -1.711300 1.294800 -0.727100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -2.868300 0.546000 -0.621300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 -4.083300 1.176100 -0.413500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 -4.139400 2.556800 -0.322300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 56 -5.214200 0.444900 -0.304800 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 8 3 -0.387700 0.608800 -0.947700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 0.226200 0.304300 0.347200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 10 2 0.047000 -0.854200 1.060700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -0.691200 -2.014700 0.840800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -0.670400 -3.023500 1.759800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 0.086300 -2.910000 2.926900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 0.827300 -1.770600 3.169200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 0.813900 -0.728900 2.234600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 1.457500 0.579200 2.167200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 25 1.093900 1.145000 1.051800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.860 2.000 18 25 0.093700 -3.956700 3.856900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.267 1.000 19 2 0.208300 -3.680300 5.211300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 0.331500 -4.714000 6.135000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 0.449000 -4.383900 7.481600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 25 0.428600 -3.100300 7.836500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 4.743 1.050 23 2 0.304800 -2.150500 6.932100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 25 0.196500 -2.421900 5.647500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 6.428 1.050 25 25 0.579600 -5.376800 8.440300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.258 1.000 26 3 0.342700 -6.153100 5.687900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 26 1.724600 -6.570300 5.415200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.715 2.000 28 32 1.774100 -7.956900 4.980400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 29 3 2.507000 -8.785500 5.946200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 3 2.414500 -10.256000 5.532400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 3 3.009100 -10.425300 4.131600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 3 2.259600 -9.515700 3.154200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 3 2.356600 -8.066700 3.636800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 41 -3.025700 4.380300 -0.362600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -0.864600 3.257400 -0.723600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -2.823900 -0.530500 -0.696600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -5.087400 3.049700 -0.164600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -0.547416 -0.325132 -1.506504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 0.277099 1.270659 -1.522143 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -1.281600 -2.116000 -0.057900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -1.245900 -3.919900 1.581700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 1.412200 -1.683700 4.072900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 2.120600 1.000900 2.908000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 43 0.008629 -4.998230 3.513421 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 12.674 2.000 45 41 0.292200 -1.119400 7.253000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 43 0.671933 -5.106846 9.502656 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 13.941 2.000 47 43 0.590890 -6.434562 8.138616 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 13.941 2.000 48 41 -0.081976 -6.786612 6.480562 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 -0.259197 -6.257572 4.773129 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 43 2.149224 -5.936726 4.622560 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 3.562570 -8.476766 5.967537 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 2.067470 -8.658200 6.946504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 2.976015 -10.874330 6.248199 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 1.360095 -10.569340 5.525426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.074037 -10.150375 4.149643 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 2.906341 -11.473378 3.813838 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 2.709889 -9.601919 2.154297 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 1.203158 -9.818666 3.107922 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 1.806774 -7.412458 2.944225 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 3.412883 -7.761366 3.668998 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 44 0.738107 -8.323700 4.933752 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 6.982 0.540 ::: } m_bond[130] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 34 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 35 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 8 1 1 1 10 4 3 1 1 1 11 4 5 2 1 1 12 4 36 1 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 7 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 37 1 1 1 19 7 5 1 1 1 20 8 3 1 1 1 21 8 9 1 1 1 22 8 38 1 1 1 23 8 39 1 1 1 24 9 8 1 1 1 25 9 17 1 1 1 26 9 10 1 1 1 27 10 9 1 1 1 28 10 15 2 1 1 29 10 11 1 1 1 30 11 10 1 1 1 31 11 12 2 1 1 32 11 40 1 1 1 33 12 11 2 1 1 34 12 13 1 1 1 35 12 41 1 1 1 36 13 12 1 1 1 37 13 14 2 1 1 38 13 18 1 1 1 39 14 13 2 1 1 40 14 15 1 1 1 41 14 42 1 1 1 42 15 10 2 1 1 43 15 14 1 1 1 44 15 16 1 1 1 45 16 15 1 1 1 46 16 17 2 1 1 47 16 43 1 1 1 48 17 9 1 1 1 49 17 16 2 1 1 50 18 13 1 1 1 51 18 19 1 1 1 52 18 44 1 1 1 53 19 18 1 1 1 54 19 24 2 1 1 55 19 20 1 1 1 56 20 19 1 1 1 57 20 21 2 1 1 58 20 26 1 1 1 59 21 20 2 1 1 60 21 22 1 1 1 61 21 25 1 1 1 62 22 21 1 1 1 63 22 23 2 1 1 64 23 22 2 1 1 65 23 24 1 1 1 66 23 45 1 1 1 67 24 19 2 1 1 68 24 23 1 1 1 69 25 21 1 1 1 70 25 46 1 1 1 71 25 47 1 1 1 72 26 20 1 1 1 73 26 27 1 1 1 74 26 48 1 1 1 75 26 49 1 1 1 76 27 26 1 1 1 77 27 28 1 1 1 78 27 50 1 1 1 79 28 27 1 1 1 80 28 33 1 1 1 81 28 29 1 1 1 82 28 61 1 1 1 83 29 28 1 1 1 84 29 30 1 1 1 85 29 51 1 1 1 86 29 52 1 1 1 87 30 29 1 1 1 88 30 31 1 1 1 89 30 53 1 1 1 90 30 54 1 1 1 91 31 30 1 1 1 92 31 32 1 1 1 93 31 55 1 1 1 94 31 56 1 1 1 95 32 31 1 1 1 96 32 33 1 1 1 97 32 57 1 1 1 98 32 58 1 1 1 99 33 28 1 1 1 100 33 32 1 1 1 101 33 59 1 1 1 102 33 60 1 1 1 103 34 1 1 1 1 104 35 2 1 1 1 105 36 4 1 1 1 106 37 6 1 1 1 107 38 8 1 1 1 108 39 8 1 1 1 109 40 11 1 1 1 110 41 12 1 1 1 111 42 14 1 1 1 112 43 16 1 1 1 113 44 18 1 1 1 114 45 23 1 1 1 115 46 25 1 1 1 116 47 25 1 1 1 117 48 26 1 1 1 118 49 26 1 1 1 119 50 27 1 1 1 120 51 29 1 1 1 121 52 29 1 1 1 122 53 30 1 1 1 123 54 30 1 1 1 124 55 31 1 1 1 125 56 31 1 1 1 126 57 32 1 1 1 127 58 32 1 1 1 128 59 33 1 1 1 129 60 33 1 1 1 130 61 28 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 1.4150 1.3442 0.0709 1.2765 2 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[62] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -2.982200 3.303500 -0.433600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -1.768600 2.672800 -0.636400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -1.711300 1.294800 -0.727100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -2.868300 0.546000 -0.621300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 -4.083300 1.176100 -0.413500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 -4.139400 2.556800 -0.322300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 56 -5.214200 0.444900 -0.304800 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 0 1 "" 0 <> <> 8 3 -0.387700 0.608800 -0.947700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 0.226200 0.304300 0.347200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 10 2 0.047000 -0.854200 1.060700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -0.691200 -2.014700 0.840800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -0.670400 -3.023500 1.759800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 0.086300 -2.910000 2.926900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 0.827300 -1.770600 3.169200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 0.813900 -0.728900 2.234600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 1.457500 0.579200 2.167200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 25 1.093900 1.145000 1.051800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.860 2.000 18 25 0.093700 -3.956700 3.856900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 19 2 0.208300 -3.680300 5.211300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 0.331500 -4.714000 6.135000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 0.449000 -4.383900 7.481600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 25 0.428600 -3.100300 7.836500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 23 2 0.304800 -2.150500 6.932100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 31 0.196500 -2.421900 5.647500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 25 25 0.579600 -5.376800 8.440300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 3 0.342700 -6.153100 5.687900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 26 1.724600 -6.570300 5.415200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.715 2.000 28 32 1.774100 -7.956900 4.980400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 29 3 2.507000 -8.785500 5.946200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 3 2.414500 -10.256000 5.532400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 3 3.009100 -10.425300 4.131600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 3 2.259600 -9.515700 3.154200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 3 2.356600 -8.066700 3.636800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 41 -3.025700 4.380300 -0.362600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -0.864600 3.257400 -0.723600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -2.823900 -0.530500 -0.696600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -5.087400 3.049700 -0.164600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -0.547416 -0.325132 -1.506504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 0.277099 1.270659 -1.522143 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -1.281600 -2.116000 -0.057900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -1.245900 -3.919900 1.581700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 1.412200 -1.683700 4.072900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 2.120600 1.000900 2.908000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 43 0.008629 -4.998230 3.513421 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.897 2.000 45 41 0.292200 -1.119400 7.253000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 43 0.671933 -5.106846 9.502656 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.207 2.000 47 43 0.590890 -6.434562 8.138616 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.207 2.000 48 41 -0.081976 -6.786612 6.480562 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 -0.259197 -6.257572 4.773129 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 43 2.149224 -5.936726 4.622560 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 3.562570 -8.476766 5.967537 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 2.067470 -8.658200 6.946504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 2.976015 -10.874330 6.248199 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 1.360095 -10.569340 5.525426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.074037 -10.150375 4.149643 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 2.906341 -11.473378 3.813838 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 2.709889 -9.601919 2.154297 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 1.203158 -9.818666 3.107922 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 1.806774 -7.412458 2.944225 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 3.412883 -7.761366 3.668998 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 44 0.738107 -8.323700 4.933752 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 6.982 0.540 62 44 0.095332 -1.592661 4.931869 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 6.428 1.050 ::: } m_bond[132] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 34 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 35 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 8 1 1 1 10 4 3 1 1 1 11 4 5 2 1 1 12 4 36 1 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 7 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 37 1 1 1 19 7 5 1 1 1 20 8 3 1 1 1 21 8 9 1 1 1 22 8 38 1 1 1 23 8 39 1 1 1 24 9 8 1 1 1 25 9 17 1 1 1 26 9 10 1 1 1 27 10 9 1 1 1 28 10 15 2 1 1 29 10 11 1 1 1 30 11 10 1 1 1 31 11 12 2 1 1 32 11 40 1 1 1 33 12 11 2 1 1 34 12 13 1 1 1 35 12 41 1 1 1 36 13 12 1 1 1 37 13 14 2 1 1 38 13 18 1 1 1 39 14 13 2 1 1 40 14 15 1 1 1 41 14 42 1 1 1 42 15 10 2 1 1 43 15 14 1 1 1 44 15 16 1 1 1 45 16 15 1 1 1 46 16 17 2 1 1 47 16 43 1 1 1 48 17 9 1 1 1 49 17 16 2 1 1 50 18 13 1 1 1 51 18 19 1 1 1 52 18 44 1 1 1 53 19 18 1 1 1 54 19 24 2 1 1 55 19 20 1 1 1 56 20 19 1 1 1 57 20 21 2 1 1 58 20 26 1 1 1 59 21 20 2 1 1 60 21 22 1 1 1 61 21 25 1 1 1 62 22 21 1 1 1 63 22 23 2 1 1 64 23 22 2 1 1 65 23 24 1 1 1 66 23 45 1 1 1 67 24 19 2 1 1 68 24 23 1 1 1 69 24 62 1 1 1 70 25 21 1 1 1 71 25 46 1 1 1 72 25 47 1 1 1 73 26 20 1 1 1 74 26 27 1 1 1 75 26 48 1 1 1 76 26 49 1 1 1 77 27 26 1 1 1 78 27 28 1 1 1 79 27 50 1 1 1 80 28 27 1 1 1 81 28 33 1 1 1 82 28 29 1 1 1 83 28 61 1 1 1 84 29 28 1 1 1 85 29 30 1 1 1 86 29 51 1 1 1 87 29 52 1 1 1 88 30 29 1 1 1 89 30 31 1 1 1 90 30 53 1 1 1 91 30 54 1 1 1 92 31 30 1 1 1 93 31 32 1 1 1 94 31 55 1 1 1 95 31 56 1 1 1 96 32 31 1 1 1 97 32 33 1 1 1 98 32 57 1 1 1 99 32 58 1 1 1 100 33 28 1 1 1 101 33 32 1 1 1 102 33 59 1 1 1 103 33 60 1 1 1 104 34 1 1 1 1 105 35 2 1 1 1 106 36 4 1 1 1 107 37 6 1 1 1 108 38 8 1 1 1 109 39 8 1 1 1 110 40 11 1 1 1 111 41 12 1 1 1 112 42 14 1 1 1 113 43 16 1 1 1 114 44 18 1 1 1 115 45 23 1 1 1 116 46 25 1 1 1 117 47 25 1 1 1 118 48 26 1 1 1 119 49 26 1 1 1 120 50 27 1 1 1 121 51 29 1 1 1 122 52 29 1 1 1 123 53 30 1 1 1 124 54 30 1 1 1 125 55 31 1 1 1 126 56 31 1 1 1 127 57 32 1 1 1 128 58 32 1 1 1 129 59 33 1 1 1 130 60 33 1 1 1 131 61 28 1 1 1 132 62 24 1 1 1 ::: } }