{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.999999999997365 3_S_4_10_2_35 10_R_18_11_3_41 0.0254 0.0248 0.0006 -0.0000 1 m_depend[8] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 r_epik_Ionization_Penalty 5 10 r_epik_Ionization_Penalty_Charging 6 10 r_epik_Ionization_Penalty_Neutral 7 10 r_epik_State_Penalty 8 10 i_epik_Tot_Q ::: } m_atom[61] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 3.844000 3.700300 -3.893900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 3.395300 4.134600 -2.497200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 3.584400 2.975000 -1.517100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 2.656100 1.847300 -1.888100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 1.289200 2.052800 -1.900100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 0.437700 1.018400 -2.240400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 0.953100 -0.222000 -2.567300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 2.320000 -0.427800 -2.554000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 3.171500 0.606900 -2.214600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 3.267900 3.450200 -0.097600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 4.253700 4.515700 0.307000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 5.611400 4.271800 0.212000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 6.517100 5.248900 0.577000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 6.063500 6.471600 1.050200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 4.700800 6.711900 1.149800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 3.799100 5.733700 0.777800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 16 6.952500 7.432200 1.415900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 2 3.366400 2.286800 0.855200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 4.504600 1.502000 0.870800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 4.599700 0.438400 1.747300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 3.547000 0.150900 2.604000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 2.403700 0.936400 2.582400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 2.316100 2.002600 1.708300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 16 3.635500 -0.898800 3.462600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 25 3 4.842100 -1.663800 3.429900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 3 4.757500 -2.793800 4.457900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 32 3.671700 -3.711700 4.088400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 28 3 4.038200 -4.515100 2.914500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 3 3.301400 -4.571800 5.220300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 41 3.708014 4.534033 -4.598455 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 3.240929 2.840857 -4.222021 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 4.905645 3.413775 -3.865366 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 3.998371 4.994043 -2.169079 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 2.333664 4.421161 -2.525694 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 4.620411 2.608614 -1.566520 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 0.886600 3.021900 -1.645000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -0.629900 1.180400 -2.255200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 0.287800 -1.030200 -2.832900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 2.722600 -1.397000 -2.809000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 4.239400 0.446000 -2.204100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 2.250666 3.866374 -0.052504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 5.964000 3.317900 -0.151600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 7.577500 5.059400 0.498800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 4.345200 7.662800 1.518200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 2.738100 5.920200 0.855200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 42 6.591789 8.401328 1.790970 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.011 1.000 47 41 5.321700 1.723200 0.200100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 5.490600 -0.171900 1.762000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 1.582800 0.714400 3.248000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 1.426300 2.614400 1.691100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 4.978124 -2.091228 2.425508 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 5.695646 -1.012791 3.669998 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 5.710537 -3.342698 4.478650 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 4.556722 -2.370029 5.452941 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 3.209289 -5.192029 2.660190 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 4.937905 -5.106044 3.141030 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 4.241837 -3.848804 2.063276 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 2.488244 -5.247513 4.916673 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 2.964511 -3.947061 6.060661 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 4.174186 -5.164818 5.531065 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 44 2.792815 -3.106065 3.822379 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.369 1.150 ::: } m_bond[126] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 30 1 3 1 31 1 4 1 32 1 5 2 1 1 6 2 3 1 7 2 33 1 8 2 34 1 9 3 2 1 10 3 4 1 11 3 10 1 12 3 35 1 13 4 3 1 14 4 9 2 15 4 5 1 16 5 4 1 17 5 6 2 18 5 36 1 19 6 5 2 20 6 7 1 21 6 37 1 22 7 6 1 23 7 8 2 24 7 38 1 25 8 7 2 26 8 9 1 27 8 39 1 28 9 4 2 29 9 8 1 30 9 40 1 31 10 3 1 32 10 11 1 33 10 18 1 34 10 41 1 35 11 10 1 36 11 16 2 37 11 12 1 38 12 11 1 39 12 13 2 40 12 42 1 41 13 12 2 42 13 14 1 43 13 43 1 44 14 13 1 45 14 15 2 46 14 17 1 47 15 14 2 48 15 16 1 49 15 44 1 50 16 11 2 51 16 15 1 52 16 45 1 53 17 14 1 54 17 46 1 55 18 10 1 56 18 23 2 57 18 19 1 58 19 18 1 59 19 20 2 60 19 47 1 61 20 19 2 62 20 21 1 63 20 48 1 64 21 20 1 65 21 22 2 66 21 24 1 67 22 21 2 68 22 23 1 69 22 49 1 70 23 18 2 71 23 22 1 72 23 50 1 73 24 21 1 74 24 25 1 75 25 24 1 76 25 26 1 77 25 51 1 78 25 52 1 79 26 25 1 80 26 27 1 81 26 53 1 82 26 54 1 83 27 26 1 84 27 28 1 85 27 29 1 86 27 61 1 87 28 27 1 88 28 55 1 89 28 56 1 90 28 57 1 91 29 27 1 92 29 58 1 93 29 59 1 94 29 60 1 95 30 1 1 96 31 1 1 97 32 1 1 98 33 2 1 99 34 2 1 100 35 3 1 101 36 5 1 102 37 6 1 103 38 7 1 104 39 8 1 105 40 9 1 106 41 10 1 107 42 12 1 108 43 13 1 109 44 15 1 110 45 16 1 111 46 17 1 112 47 19 1 113 48 20 1 114 49 22 1 115 50 23 1 116 51 25 1 117 52 25 1 118 53 26 1 119 54 26 1 120 55 28 1 121 56 28 1 122 57 28 1 123 58 29 1 124 59 29 1 125 60 29 1 126 61 27 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 0.999999999997365 3_S_4_10_2_35 10_S_18_11_3_41 0.0254 0.0248 0.0006 -0.0000 1 m_depend[8] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 r_epik_Ionization_Penalty 5 10 r_epik_Ionization_Penalty_Charging 6 10 r_epik_Ionization_Penalty_Neutral 7 10 r_epik_State_Penalty 8 10 i_epik_Tot_Q ::: } m_atom[61] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -3.226200 0.907100 1.986800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -2.313100 0.964500 0.760500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -0.999200 1.653300 1.134700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -1.272400 3.087600 1.507600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -1.842600 3.945000 0.585200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -2.097200 5.259600 0.928600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -1.773300 5.719200 2.191500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 -1.198400 4.863200 3.112100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -0.947700 3.547500 2.770100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 -0.042700 1.609900 -0.058600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 1.229700 2.337900 0.290800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 1.909800 2.020600 1.452100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 3.079400 2.682500 1.771700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 3.565200 3.674600 0.932400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 2.878000 3.995000 -0.229400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 1.712100 3.325900 -0.547600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 16 4.712200 4.331700 1.247900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 2 0.275400 0.175800 -0.395500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 0.736300 -0.678500 0.589000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 1.023100 -1.995000 0.283900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 0.859600 -2.456500 -1.014100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 0.402400 -1.595700 -2.001400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 0.111100 -0.281700 -1.689900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 16 1.147300 -3.749400 -1.318200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 25 3 1.613500 -4.578400 -0.251600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 3 1.882800 -5.988100 -0.781700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 32 2.986000 -5.944500 -1.750700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 28 3 4.246900 -5.570400 -1.096300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 3 3.118800 -7.226500 -2.455400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 41 -4.170829 0.411865 1.717693 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -3.434607 1.928865 2.336889 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -2.729607 0.339303 2.787427 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -2.104693 -0.057265 0.410411 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -2.809667 1.532267 -0.040164 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -0.543561 1.145999 1.997856 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -2.092200 3.586900 -0.402700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -2.546800 5.928200 0.209500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -1.969800 6.746900 2.458900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -0.945300 5.222300 4.098700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -0.498500 2.878700 3.489400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -0.503044 2.091083 -0.934126 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 1.528500 1.251800 2.107700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 3.612800 2.431000 2.676500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 3.254300 4.766700 -0.884600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 1.176700 3.574900 -1.451900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 42 5.096543 5.118167 0.581754 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.011 1.000 47 41 0.868300 -0.317500 1.598300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 1.378600 -2.663200 1.054300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 0.274000 -1.952700 -3.012600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -0.244800 0.388700 -2.458100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 2.542700 -4.157843 0.160369 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 0.849552 -4.623504 0.538558 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 2.155364 -6.648481 0.054724 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 0.977756 -6.373983 -1.273623 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 5.054210 -5.545421 -1.843044 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 4.489615 -6.309357 -0.318462 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 4.140969 -4.576316 -0.637415 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 3.950241 -7.165986 -3.173066 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 2.185234 -7.447492 -2.993561 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 3.320366 -8.025981 -1.727251 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 44 2.750024 -5.171586 -2.496970 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.369 1.150 ::: } m_bond[126] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 30 1 3 1 31 1 4 1 32 1 5 2 1 1 6 2 3 1 7 2 33 1 8 2 34 1 9 3 2 1 10 3 4 1 11 3 10 1 12 3 35 1 13 4 3 1 14 4 9 2 15 4 5 1 16 5 4 1 17 5 6 2 18 5 36 1 19 6 5 2 20 6 7 1 21 6 37 1 22 7 6 1 23 7 8 2 24 7 38 1 25 8 7 2 26 8 9 1 27 8 39 1 28 9 4 2 29 9 8 1 30 9 40 1 31 10 3 1 32 10 11 1 33 10 18 1 34 10 41 1 35 11 10 1 36 11 16 2 37 11 12 1 38 12 11 1 39 12 13 2 40 12 42 1 41 13 12 2 42 13 14 1 43 13 43 1 44 14 13 1 45 14 15 2 46 14 17 1 47 15 14 2 48 15 16 1 49 15 44 1 50 16 11 2 51 16 15 1 52 16 45 1 53 17 14 1 54 17 46 1 55 18 10 1 56 18 23 2 57 18 19 1 58 19 18 1 59 19 20 2 60 19 47 1 61 20 19 2 62 20 21 1 63 20 48 1 64 21 20 1 65 21 22 2 66 21 24 1 67 22 21 2 68 22 23 1 69 22 49 1 70 23 18 2 71 23 22 1 72 23 50 1 73 24 21 1 74 24 25 1 75 25 24 1 76 25 26 1 77 25 51 1 78 25 52 1 79 26 25 1 80 26 27 1 81 26 53 1 82 26 54 1 83 27 26 1 84 27 28 1 85 27 29 1 86 27 61 1 87 28 27 1 88 28 55 1 89 28 56 1 90 28 57 1 91 29 27 1 92 29 58 1 93 29 59 1 94 29 60 1 95 30 1 1 96 31 1 1 97 32 1 1 98 33 2 1 99 34 2 1 100 35 3 1 101 36 5 1 102 37 6 1 103 38 7 1 104 39 8 1 105 40 9 1 106 41 10 1 107 42 12 1 108 43 13 1 109 44 15 1 110 45 16 1 111 46 17 1 112 47 19 1 113 48 20 1 114 49 22 1 115 50 23 1 116 51 25 1 117 52 25 1 118 53 26 1 119 54 26 1 120 55 28 1 121 56 28 1 122 57 28 1 123 58 29 1 124 59 29 1 125 60 29 1 126 61 27 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000003 0.999999999997365 3_R_4_10_2_35 10_R_18_11_3_41 0.0254 0.0248 0.0006 -0.0000 1 m_depend[8] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 r_epik_Ionization_Penalty 5 10 r_epik_Ionization_Penalty_Charging 6 10 r_epik_Ionization_Penalty_Neutral 7 10 r_epik_State_Penalty 8 10 i_epik_Tot_Q ::: } m_atom[61] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 0.955300 1.262600 0.329000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -0.131900 1.600400 1.351200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 0.357900 1.239100 2.754900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 1.531400 2.112200 3.117700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 1.385600 3.486400 3.153200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 2.460900 4.287100 3.490300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 3.684500 3.714100 3.782500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 3.831600 2.340200 3.742300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 2.755200 1.539200 3.409400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 -0.772500 1.459700 3.762000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 -0.290100 1.103800 5.144700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 0.294900 -0.127500 5.375900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 0.743100 -0.453900 6.641200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 0.595200 0.450300 7.682900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 0.002800 1.682900 7.449500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -0.438200 2.006900 6.181100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 16 1.029500 0.129000 8.929900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 2 -1.946000 0.586500 3.399300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -1.760900 -0.768300 3.194500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 -2.836000 -1.571800 2.867400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 -4.100100 -1.016200 2.732900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -4.282100 0.344400 2.933300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 -3.204900 1.142600 3.266200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 16 -5.158200 -1.803500 2.404800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 25 3 -4.896600 -3.195300 2.213500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 3 -6.198300 -3.913900 1.852900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 32 -6.682600 -3.427400 0.554100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 28 3 -5.762800 -3.807000 -0.526500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 3 -8.042100 -3.913800 0.283500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 41 0.603129 1.522370 -0.680205 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 1.178917 0.186495 0.373655 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 1.865436 1.836092 0.558696 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -0.355517 2.676505 1.306545 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -1.042066 1.026948 1.121525 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 0.680660 0.187801 2.779322 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 0.430700 3.934200 2.921000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 2.345900 5.360400 3.522000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 4.525400 4.339800 4.042500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 4.787500 1.892500 3.970500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 2.870200 0.465900 3.377700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -1.091495 2.512389 3.752633 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 0.405200 -0.833100 4.565700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 1.203700 -1.414200 6.820400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.113800 2.388400 8.258900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -0.899500 2.966300 5.998900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 42 0.911768 0.846643 9.755205 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.011 1.000 47 41 -0.775700 -1.199400 3.294300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.691600 -2.630700 2.711500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -5.265200 0.779300 2.828800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -3.346100 2.201900 3.422400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -4.169231 -3.322984 1.398251 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -4.486751 -3.622211 3.140738 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -6.014960 -4.996893 1.793628 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -6.954845 -3.711854 2.625439 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -6.148723 -3.430983 -1.485497 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -5.679638 -4.903024 -0.569107 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -4.771304 -3.371232 -0.334036 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 -8.379285 -3.535539 -0.692833 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 -8.722768 -3.556329 1.070205 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 -8.042170 -5.013723 0.270516 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 44 -6.718827 -2.328821 0.596662 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.369 1.150 ::: } m_bond[126] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 30 1 3 1 31 1 4 1 32 1 5 2 1 1 6 2 3 1 7 2 33 1 8 2 34 1 9 3 2 1 10 3 4 1 11 3 10 1 12 3 35 1 13 4 3 1 14 4 9 2 15 4 5 1 16 5 4 1 17 5 6 2 18 5 36 1 19 6 5 2 20 6 7 1 21 6 37 1 22 7 6 1 23 7 8 2 24 7 38 1 25 8 7 2 26 8 9 1 27 8 39 1 28 9 4 2 29 9 8 1 30 9 40 1 31 10 3 1 32 10 11 1 33 10 18 1 34 10 41 1 35 11 10 1 36 11 16 2 37 11 12 1 38 12 11 1 39 12 13 2 40 12 42 1 41 13 12 2 42 13 14 1 43 13 43 1 44 14 13 1 45 14 15 2 46 14 17 1 47 15 14 2 48 15 16 1 49 15 44 1 50 16 11 2 51 16 15 1 52 16 45 1 53 17 14 1 54 17 46 1 55 18 10 1 56 18 23 2 57 18 19 1 58 19 18 1 59 19 20 2 60 19 47 1 61 20 19 2 62 20 21 1 63 20 48 1 64 21 20 1 65 21 22 2 66 21 24 1 67 22 21 2 68 22 23 1 69 22 49 1 70 23 18 2 71 23 22 1 72 23 50 1 73 24 21 1 74 24 25 1 75 25 24 1 76 25 26 1 77 25 51 1 78 25 52 1 79 26 25 1 80 26 27 1 81 26 53 1 82 26 54 1 83 27 26 1 84 27 28 1 85 27 29 1 86 27 61 1 87 28 27 1 88 28 55 1 89 28 56 1 90 28 57 1 91 29 27 1 92 29 58 1 93 29 59 1 94 29 60 1 95 30 1 1 96 31 1 1 97 32 1 1 98 33 2 1 99 34 2 1 100 35 3 1 101 36 5 1 102 37 6 1 103 38 7 1 104 39 8 1 105 40 9 1 106 41 10 1 107 42 12 1 108 43 13 1 109 44 15 1 110 45 16 1 111 46 17 1 112 47 19 1 113 48 20 1 114 49 22 1 115 50 23 1 116 51 25 1 117 52 25 1 118 53 26 1 119 54 26 1 120 55 28 1 121 56 28 1 122 57 28 1 123 58 29 1 124 59 29 1 125 60 29 1 126 61 27 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000004 0.999999999997365 3_R_4_10_2_35 10_S_18_11_3_41 0.0254 0.0248 0.0006 -0.0000 1 m_depend[8] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 r_epik_Ionization_Penalty 5 10 r_epik_Ionization_Penalty_Charging 6 10 r_epik_Ionization_Penalty_Neutral 7 10 r_epik_State_Penalty 8 10 i_epik_Tot_Q ::: } m_atom[61] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -3.782400 -0.019300 -3.286900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -2.985300 -0.461800 -2.058200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -3.675000 0.049300 -0.791700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -5.022300 -0.611200 -0.652000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -5.110700 -1.987300 -0.553900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -6.346200 -2.592800 -0.421300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -7.494200 -1.823000 -0.396600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 -7.406200 -0.447300 -0.499500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -6.170300 0.158500 -0.627700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 -2.814200 -0.285100 0.428200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 -1.466900 0.375400 0.288500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -0.313200 -0.375500 0.419100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 0.922900 0.226500 0.285400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 1.006300 1.586700 0.025500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -0.152600 2.339000 -0.099500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -1.386300 1.732300 0.035100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 16 2.221300 2.181100 -0.106900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 2 -3.493500 0.218300 1.675600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -3.908800 1.534900 1.751900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 -4.536800 1.997400 2.892100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 -4.740200 1.142600 3.965700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -4.317500 -0.176500 3.888900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 -3.695400 -0.635700 2.744100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 16 -5.352000 1.596800 5.091000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 25 3 -5.760600 2.966100 5.099600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 3 -6.425100 3.291600 6.438800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 32 -5.443100 3.144100 7.521400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 28 3 -4.511800 4.279800 7.545800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 3 -6.111200 2.983100 8.819700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 41 -3.286550 -0.386749 -4.197457 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -3.833226 1.079169 -3.314879 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -4.800470 -0.432200 -3.231694 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -2.934474 -1.560269 -2.030221 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -1.967212 -0.048943 -2.113378 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -3.821812 1.137382 -0.858965 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -4.214100 -2.589000 -0.577300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -6.415000 -3.667600 -0.340500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -8.459700 -2.296400 -0.296400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -8.303000 0.154100 -0.480200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -6.101600 1.233300 -0.708500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -2.674196 -1.373108 0.509675 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -0.378700 -1.434300 0.621500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 1.823700 -0.361300 0.383500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.090200 3.398100 -0.301400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -2.288800 2.317400 -0.062500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 42 2.286408 3.259662 -0.312970 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.011 1.000 47 41 -3.745600 2.201300 0.917800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -4.865300 3.024600 2.949400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -4.475000 -0.844000 4.723200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -3.366200 -1.662500 2.683700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -4.881218 3.612012 4.960008 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -6.476736 3.140206 4.283000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -6.798549 4.326113 6.420941 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -7.264723 2.601585 6.608836 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -3.789191 4.143887 8.363946 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -5.074185 5.211783 7.704324 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -3.974663 4.334146 6.587400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 -5.354368 2.875004 9.610599 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 -6.747414 2.086068 8.795909 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 -6.732078 3.867674 9.024734 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 44 -4.859195 2.232500 7.326359 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.369 1.150 ::: } m_bond[126] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 30 1 3 1 31 1 4 1 32 1 5 2 1 1 6 2 3 1 7 2 33 1 8 2 34 1 9 3 2 1 10 3 4 1 11 3 10 1 12 3 35 1 13 4 3 1 14 4 9 2 15 4 5 1 16 5 4 1 17 5 6 2 18 5 36 1 19 6 5 2 20 6 7 1 21 6 37 1 22 7 6 1 23 7 8 2 24 7 38 1 25 8 7 2 26 8 9 1 27 8 39 1 28 9 4 2 29 9 8 1 30 9 40 1 31 10 3 1 32 10 11 1 33 10 18 1 34 10 41 1 35 11 10 1 36 11 16 2 37 11 12 1 38 12 11 1 39 12 13 2 40 12 42 1 41 13 12 2 42 13 14 1 43 13 43 1 44 14 13 1 45 14 15 2 46 14 17 1 47 15 14 2 48 15 16 1 49 15 44 1 50 16 11 2 51 16 15 1 52 16 45 1 53 17 14 1 54 17 46 1 55 18 10 1 56 18 23 2 57 18 19 1 58 19 18 1 59 19 20 2 60 19 47 1 61 20 19 2 62 20 21 1 63 20 48 1 64 21 20 1 65 21 22 2 66 21 24 1 67 22 21 2 68 22 23 1 69 22 49 1 70 23 18 2 71 23 22 1 72 23 50 1 73 24 21 1 74 24 25 1 75 25 24 1 76 25 26 1 77 25 51 1 78 25 52 1 79 26 25 1 80 26 27 1 81 26 53 1 82 26 54 1 83 27 26 1 84 27 28 1 85 27 29 1 86 27 61 1 87 28 27 1 88 28 55 1 89 28 56 1 90 28 57 1 91 29 27 1 92 29 58 1 93 29 59 1 94 29 60 1 95 30 1 1 96 31 1 1 97 32 1 1 98 33 2 1 99 34 2 1 100 35 3 1 101 36 5 1 102 37 6 1 103 38 7 1 104 39 8 1 105 40 9 1 106 41 10 1 107 42 12 1 108 43 13 1 109 44 15 1 110 45 16 1 111 46 17 1 112 47 19 1 113 48 20 1 114 49 22 1 115 50 23 1 116 51 25 1 117 52 25 1 118 53 26 1 119 54 26 1 120 55 28 1 121 56 28 1 122 57 28 1 123 58 29 1 124 59 29 1 125 60 29 1 126 61 27 1 ::: } }