{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 s_st_Chirality_6 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.999999442442753 2_S_42_4_1_3 6_R_8_5_35_7 12_S_9_15_14_13 18_S_17_23_20_19 26_S_25_31_28_27 45_S_48_43_47_46 0.0716 0.0692 0.0024 0.0692 1 m_depend[12] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 s_st_Chirality_6 8 10 r_epik_Ionization_Penalty 9 10 r_epik_Ionization_Penalty_Charging 10 10 r_epik_Ionization_Penalty_Neutral 11 10 r_epik_State_Penalty 12 10 i_epik_Tot_Q ::: } m_atom[92] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -1.212100 0.291800 4.365800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -0.179300 -0.833000 4.460900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 41 0.064837 -1.230520 3.464720 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 4 2 1.070400 -0.312800 5.123200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 1.077200 0.923100 5.629900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 3 2.308100 1.432800 6.339000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 41 2.040779 2.362838 6.862038 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 8 3 3.425300 1.713100 5.327200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 3.512900 0.626100 4.358500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.666 2.000 10 2 3.437900 -0.683200 4.800100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 2.254100 -1.172500 5.199100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 -2.667 2.000 12 3 3.684500 0.917500 2.933100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 41 3.800378 2.006402 2.828868 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 14 3 4.917800 0.180600 2.406800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 2.464600 0.459200 2.176300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 15 1.642300 -0.246300 2.721400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.988 2.000 17 25 2.287200 0.833400 0.893700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 18 3 1.163500 0.295900 0.122500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 41 0.859297 -0.649819 0.594810 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 20 3 0.014200 1.305900 0.124500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 3 -0.522600 1.464900 1.548400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 3 0.521800 2.657100 -0.382900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 1.604400 0.039500 -1.295500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 15 2.628500 0.538300 -1.711800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.853 2.000 25 25 0.860600 -0.744300 -2.101200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 3 1.222600 -0.896600 -3.512500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 41 1.616047 0.070060 -3.860017 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 3 2.273000 -2.000000 -3.653400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 3 2.651100 -2.159200 -5.127400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 3 3.517200 -1.625900 -2.845300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -0.002900 -1.265100 -4.308500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 15 -1.069200 -1.387900 -3.753700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 33 16 0.090200 -1.457000 -5.633700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 34 3 -1.130700 -1.809700 -6.336100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 3 2.790400 0.379800 7.338700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 3.926900 0.943000 8.152500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 2 5.230500 0.786900 7.720000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 38 2 6.272600 1.307400 8.464300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 39 2 6.011800 1.976000 9.645700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 40 2 4.708500 2.127500 10.080900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 41 2 3.666100 1.610800 9.334400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 42 25 -0.729500 -1.935300 5.253700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 43 2 -1.498100 -2.871900 4.663400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 44 15 -1.659900 -2.854200 3.461500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 45 3 -2.156500 -3.941100 5.496700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 46 41 -2.621164 -3.486683 6.384164 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 3 -1.115300 -4.987700 5.898700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 48 32 -3.221200 -4.584600 4.715400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 49 41 -2.124291 -0.087930 3.882362 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 -0.799019 1.119494 3.770580 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -1.455482 0.652468 5.376089 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 0.188656 1.563692 5.529246 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 3.211558 2.652212 4.795803 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 4.385562 1.801648 5.856404 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.333739 -1.320991 4.826468 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 2.183872 -2.203688 5.575555 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 5.046658 0.399397 1.336509 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 4.785083 -0.902418 2.546289 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 5.808265 0.515072 2.959250 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 43 2.986155 1.542396 0.425953 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.707 2.000 61 41 -0.791060 0.946297 -0.532951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 41 -1.348872 2.191036 1.549784 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 63 41 0.282697 1.824511 2.205802 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 64 41 -0.887534 0.493460 1.913265 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 65 41 -0.304493 3.383211 -0.381453 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 66 41 0.907758 2.542845 -1.406610 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 67 41 1.327058 3.016646 0.274584 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 68 43 -0.018221 -1.269596 -1.699033 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 9.765 2.000 69 41 1.861805 -2.947856 -3.275926 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 70 41 3.406322 -2.952550 -5.228570 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 71 41 3.062183 -1.211309 -5.504910 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 72 41 1.756611 -2.428189 -5.708376 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 73 41 4.272415 -2.419238 -2.946614 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 74 41 3.245398 -1.511545 -1.785561 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 75 41 3.928235 -0.677979 -3.222787 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 76 41 -0.913922 -1.936810 -7.407011 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 77 41 -1.873544 -1.009103 -6.204846 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 78 41 -1.529490 -2.750364 -5.928526 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 79 41 1.962306 0.102976 8.007751 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 80 41 3.135666 -0.511576 6.794420 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 81 41 5.434600 0.261300 6.798900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 82 41 7.290900 1.189300 8.124100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 83 41 6.826200 2.380300 10.228600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 84 41 4.504700 2.649900 11.004000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 85 41 2.647800 1.729200 9.674400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 86 43 -0.515301 -1.998535 6.330789 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 9.770 2.000 87 41 -1.595851 -5.768152 6.506949 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 88 41 -0.318037 -4.505866 6.483685 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 89 41 -0.683510 -5.441467 4.994458 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 90 44 -3.701762 -5.365028 5.323670 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 91 44 -2.789306 -5.038417 3.811233 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 92 44 -3.969713 -3.832168 4.426308 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 ::: } m_bond[186] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 49 1 1 1 3 1 50 1 1 1 4 1 51 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 42 1 1 1 9 3 2 1 1 1 10 4 2 1 1 1 11 4 11 1 1 1 12 4 5 2 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 52 1 1 1 16 6 5 1 1 1 17 6 7 1 1 1 18 6 8 1 1 1 19 6 35 1 1 1 20 7 6 1 1 1 21 8 6 1 1 1 22 8 9 1 1 1 23 8 53 1 1 1 24 8 54 1 1 1 25 9 8 1 1 1 26 9 10 1 1 1 27 9 12 1 1 1 28 10 9 1 1 1 29 10 11 2 1 1 30 10 55 1 1 1 31 11 4 1 1 1 32 11 10 2 1 1 33 11 56 1 1 1 34 12 9 1 1 1 35 12 13 1 1 1 36 12 14 1 1 1 37 12 15 1 1 1 38 13 12 1 1 1 39 14 12 1 1 1 40 14 57 1 1 1 41 14 58 1 1 1 42 14 59 1 1 1 43 15 12 1 1 1 44 15 16 2 1 1 45 15 17 1 1 1 46 16 15 2 1 1 47 17 15 1 1 1 48 17 18 1 1 1 49 17 60 1 1 1 50 18 17 1 1 1 51 18 19 1 1 1 52 18 20 1 1 1 53 18 23 1 1 1 54 19 18 1 1 1 55 20 18 1 1 1 56 20 21 1 1 1 57 20 22 1 1 1 58 20 61 1 1 1 59 21 20 1 1 1 60 21 62 1 1 1 61 21 63 1 1 1 62 21 64 1 1 1 63 22 20 1 1 1 64 22 65 1 1 1 65 22 66 1 1 1 66 22 67 1 1 1 67 23 18 1 1 1 68 23 24 2 1 1 69 23 25 1 1 1 70 24 23 2 1 1 71 25 23 1 1 1 72 25 26 1 1 1 73 25 68 1 1 1 74 26 25 1 1 1 75 26 27 1 1 1 76 26 28 1 1 1 77 26 31 1 1 1 78 27 26 1 1 1 79 28 26 1 1 1 80 28 29 1 1 1 81 28 30 1 1 1 82 28 69 1 1 1 83 29 28 1 1 1 84 29 70 1 1 1 85 29 71 1 1 1 86 29 72 1 1 1 87 30 28 1 1 1 88 30 73 1 1 1 89 30 74 1 1 1 90 30 75 1 1 1 91 31 26 1 1 1 92 31 32 2 1 1 93 31 33 1 1 1 94 32 31 2 1 1 95 33 31 1 1 1 96 33 34 1 1 1 97 34 33 1 1 1 98 34 76 1 1 1 99 34 77 1 1 1 100 34 78 1 1 1 101 35 6 1 1 1 102 35 36 1 1 1 103 35 79 1 1 1 104 35 80 1 1 1 105 36 35 1 1 1 106 36 41 2 1 1 107 36 37 1 1 1 108 37 36 1 1 1 109 37 38 2 1 1 110 37 81 1 1 1 111 38 37 2 1 1 112 38 39 1 1 1 113 38 82 1 1 1 114 39 38 1 1 1 115 39 40 2 1 1 116 39 83 1 1 1 117 40 39 2 1 1 118 40 41 1 1 1 119 40 84 1 1 1 120 41 36 2 1 1 121 41 40 1 1 1 122 41 85 1 1 1 123 42 2 1 1 1 124 42 43 1 1 1 125 42 86 1 1 1 126 43 42 1 1 1 127 43 44 2 1 1 128 43 45 1 1 1 129 44 43 2 1 1 130 45 43 1 1 1 131 45 46 1 1 1 132 45 47 1 1 1 133 45 48 1 1 1 134 46 45 1 1 1 135 47 45 1 1 1 136 47 87 1 1 1 137 47 88 1 1 1 138 47 89 1 1 1 139 48 45 1 1 1 140 48 90 1 1 1 141 48 91 1 1 1 142 48 92 1 1 1 143 49 1 1 1 1 144 50 1 1 1 1 145 51 1 1 1 1 146 52 5 1 1 1 147 53 8 1 1 1 148 54 8 1 1 1 149 55 10 1 1 1 150 56 11 1 1 1 151 57 14 1 1 1 152 58 14 1 1 1 153 59 14 1 1 1 154 60 17 1 1 1 155 61 20 1 1 1 156 62 21 1 1 1 157 63 21 1 1 1 158 64 21 1 1 1 159 65 22 1 1 1 160 66 22 1 1 1 161 67 22 1 1 1 162 68 25 1 1 1 163 69 28 1 1 1 164 70 29 1 1 1 165 71 29 1 1 1 166 72 29 1 1 1 167 73 30 1 1 1 168 74 30 1 1 1 169 75 30 1 1 1 170 76 34 1 1 1 171 77 34 1 1 1 172 78 34 1 1 1 173 79 35 1 1 1 174 80 35 1 1 1 175 81 37 1 1 1 176 82 38 1 1 1 177 83 39 1 1 1 178 84 40 1 1 1 179 85 41 1 1 1 180 86 42 1 1 1 181 87 47 1 1 1 182 88 47 1 1 1 183 89 47 1 1 1 184 90 48 1 1 1 185 91 48 1 1 1 186 92 48 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 s_st_Chirality_6 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 0.999999442442753 2_S_42_4_1_3 6_R_8_5_35_7 12_S_9_15_14_13 18_S_17_23_20_19 26_S_25_31_28_27 45_S_48_43_47_46 0.0716 0.0692 0.0024 0.0692 1 m_depend[12] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 s_st_Chirality_6 8 10 r_epik_Ionization_Penalty 9 10 r_epik_Ionization_Penalty_Charging 10 10 r_epik_Ionization_Penalty_Neutral 11 10 r_epik_State_Penalty 12 10 i_epik_Tot_Q ::: } m_atom[92] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -1.212100 0.291800 4.365800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -0.179300 -0.833000 4.460900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 41 0.064837 -1.230520 3.464720 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 4 2 1.070400 -0.312800 5.123200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 1.077200 0.923100 5.629900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 3 2.308100 1.432800 6.339000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 41 2.040779 2.362838 6.862038 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 8 3 3.425300 1.713100 5.327200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 25 3.512900 0.626100 4.358500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.666 2.000 10 2 3.437900 -0.683200 4.800100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 2.254100 -1.172500 5.199100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 -2.667 2.000 12 3 3.684500 0.917500 2.933100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 41 3.800378 2.006402 2.828868 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 14 3 4.917800 0.180600 2.406800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 2.464600 0.459200 2.176300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 15 1.642300 -0.246300 2.721400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.988 2.000 17 25 2.287200 0.833400 0.893700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 18 3 1.163500 0.295900 0.122500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 41 0.859297 -0.649819 0.594810 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 20 3 0.014200 1.305900 0.124500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 3 -0.522600 1.464900 1.548400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 3 0.521800 2.657100 -0.382900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 1.604400 0.039500 -1.295500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 15 2.628500 0.538300 -1.711800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.853 2.000 25 25 0.860600 -0.744300 -2.101200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 3 1.222600 -0.896600 -3.512500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 41 1.616047 0.070060 -3.860017 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 3 2.273000 -2.000000 -3.653400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 3 2.651100 -2.159200 -5.127400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 3 3.517200 -1.625900 -2.845300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -0.002900 -1.265100 -4.308500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 15 -1.069200 -1.387900 -3.753700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 33 16 0.090200 -1.457000 -5.633700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 34 3 -1.130700 -1.809700 -6.336100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 3 2.790400 0.379800 7.338700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 3.926900 0.943000 8.152500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 2 5.230500 0.786900 7.720000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 38 2 6.272600 1.307400 8.464300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 39 2 6.011800 1.976000 9.645700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 40 2 4.708500 2.127500 10.080900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 41 2 3.666100 1.610800 9.334400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 42 25 -0.729500 -1.935300 5.253700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 43 2 -1.498100 -2.871900 4.663400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 44 15 -1.659900 -2.854200 3.461500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 45 3 -2.156500 -3.941100 5.496700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 46 41 -2.621164 -3.486683 6.384164 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 3 -1.115300 -4.987700 5.898700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 48 32 -3.221200 -4.584600 4.715400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 49 41 -2.124291 -0.087930 3.882362 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 -0.799019 1.119494 3.770580 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -1.455482 0.652468 5.376089 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 0.188656 1.563692 5.529246 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 3.211558 2.652212 4.795803 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 4.385562 1.801648 5.856404 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.333739 -1.320991 4.826468 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 2.183872 -2.203688 5.575555 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 5.046658 0.399397 1.336509 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 4.785083 -0.902418 2.546289 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 5.808265 0.515072 2.959250 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 43 2.986155 1.542396 0.425953 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.707 2.000 61 41 -0.791060 0.946297 -0.532951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 41 -1.348872 2.191036 1.549784 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 63 41 0.282697 1.824511 2.205802 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 64 41 -0.887534 0.493460 1.913265 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 65 41 -0.304493 3.383211 -0.381453 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 66 41 0.907758 2.542845 -1.406610 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 67 41 1.327058 3.016646 0.274584 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 68 43 -0.018221 -1.269596 -1.699033 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 9.765 2.000 69 41 1.861805 -2.947856 -3.275926 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 70 41 3.406322 -2.952550 -5.228570 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 71 41 3.062183 -1.211309 -5.504910 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 72 41 1.756611 -2.428189 -5.708376 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 73 41 4.272415 -2.419238 -2.946614 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 74 41 3.245398 -1.511545 -1.785561 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 75 41 3.928235 -0.677979 -3.222787 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 76 41 -0.913922 -1.936810 -7.407011 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 77 41 -1.873544 -1.009103 -6.204846 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 78 41 -1.529490 -2.750364 -5.928526 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 79 41 1.962306 0.102976 8.007751 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 80 41 3.135666 -0.511576 6.794420 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 81 41 5.434600 0.261300 6.798900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 82 41 7.290900 1.189300 8.124100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 83 41 6.826200 2.380300 10.228600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 84 41 4.504700 2.649900 11.004000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 85 41 2.647800 1.729200 9.674400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 86 43 -0.515301 -1.998535 6.330789 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 9.770 2.000 87 41 -1.595851 -5.768152 6.506949 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 88 41 -0.318037 -4.505866 6.483685 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 89 41 -0.683510 -5.441467 4.994458 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 90 44 -3.701762 -5.365028 5.323670 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 91 44 -2.789306 -5.038417 3.811233 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 92 44 -3.969713 -3.832168 4.426308 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.957 0.900 ::: } m_bond[186] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 49 1 1 1 3 1 50 1 1 1 4 1 51 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 42 1 1 1 9 3 2 1 1 1 10 4 2 1 1 1 11 4 11 1 1 1 12 4 5 2 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 52 1 1 1 16 6 5 1 1 1 17 6 7 1 1 1 18 6 8 1 1 1 19 6 35 1 1 1 20 7 6 1 1 1 21 8 6 1 1 1 22 8 9 1 1 1 23 8 53 1 1 1 24 8 54 1 1 1 25 9 8 1 1 1 26 9 10 1 1 1 27 9 12 1 1 1 28 10 9 1 1 1 29 10 11 2 1 1 30 10 55 1 1 1 31 11 4 1 1 1 32 11 10 2 1 1 33 11 56 1 1 1 34 12 9 1 1 1 35 12 13 1 1 1 36 12 14 1 1 1 37 12 15 1 1 1 38 13 12 1 1 1 39 14 12 1 1 1 40 14 57 1 1 1 41 14 58 1 1 1 42 14 59 1 1 1 43 15 12 1 1 1 44 15 16 2 1 1 45 15 17 1 1 1 46 16 15 2 1 1 47 17 15 1 1 1 48 17 18 1 1 1 49 17 60 1 1 1 50 18 17 1 1 1 51 18 19 1 1 1 52 18 20 1 1 1 53 18 23 1 1 1 54 19 18 1 1 1 55 20 18 1 1 1 56 20 21 1 1 1 57 20 22 1 1 1 58 20 61 1 1 1 59 21 20 1 1 1 60 21 62 1 1 1 61 21 63 1 1 1 62 21 64 1 1 1 63 22 20 1 1 1 64 22 65 1 1 1 65 22 66 1 1 1 66 22 67 1 1 1 67 23 18 1 1 1 68 23 24 2 1 1 69 23 25 1 1 1 70 24 23 2 1 1 71 25 23 1 1 1 72 25 26 1 1 1 73 25 68 1 1 1 74 26 25 1 1 1 75 26 27 1 1 1 76 26 28 1 1 1 77 26 31 1 1 1 78 27 26 1 1 1 79 28 26 1 1 1 80 28 29 1 1 1 81 28 30 1 1 1 82 28 69 1 1 1 83 29 28 1 1 1 84 29 70 1 1 1 85 29 71 1 1 1 86 29 72 1 1 1 87 30 28 1 1 1 88 30 73 1 1 1 89 30 74 1 1 1 90 30 75 1 1 1 91 31 26 1 1 1 92 31 32 2 1 1 93 31 33 1 1 1 94 32 31 2 1 1 95 33 31 1 1 1 96 33 34 1 1 1 97 34 33 1 1 1 98 34 76 1 1 1 99 34 77 1 1 1 100 34 78 1 1 1 101 35 6 1 1 1 102 35 36 1 1 1 103 35 79 1 1 1 104 35 80 1 1 1 105 36 35 1 1 1 106 36 41 2 1 1 107 36 37 1 1 1 108 37 36 1 1 1 109 37 38 2 1 1 110 37 81 1 1 1 111 38 37 2 1 1 112 38 39 1 1 1 113 38 82 1 1 1 114 39 38 1 1 1 115 39 40 2 1 1 116 39 83 1 1 1 117 40 39 2 1 1 118 40 41 1 1 1 119 40 84 1 1 1 120 41 36 2 1 1 121 41 40 1 1 1 122 41 85 1 1 1 123 42 2 1 1 1 124 42 43 1 1 1 125 42 86 1 1 1 126 43 42 1 1 1 127 43 44 2 1 1 128 43 45 1 1 1 129 44 43 2 1 1 130 45 43 1 1 1 131 45 46 1 1 1 132 45 47 1 1 1 133 45 48 1 1 1 134 46 45 1 1 1 135 47 45 1 1 1 136 47 87 1 1 1 137 47 88 1 1 1 138 47 89 1 1 1 139 48 45 1 1 1 140 48 90 1 1 1 141 48 91 1 1 1 142 48 92 1 1 1 143 49 1 1 1 1 144 50 1 1 1 1 145 51 1 1 1 1 146 52 5 1 1 1 147 53 8 1 1 1 148 54 8 1 1 1 149 55 10 1 1 1 150 56 11 1 1 1 151 57 14 1 1 1 152 58 14 1 1 1 153 59 14 1 1 1 154 60 17 1 1 1 155 61 20 1 1 1 156 62 21 1 1 1 157 63 21 1 1 1 158 64 21 1 1 1 159 65 22 1 1 1 160 66 22 1 1 1 161 67 22 1 1 1 162 68 25 1 1 1 163 69 28 1 1 1 164 70 29 1 1 1 165 71 29 1 1 1 166 72 29 1 1 1 167 73 30 1 1 1 168 74 30 1 1 1 169 75 30 1 1 1 170 76 34 1 1 1 171 77 34 1 1 1 172 78 34 1 1 1 173 79 35 1 1 1 174 80 35 1 1 1 175 81 37 1 1 1 176 82 38 1 1 1 177 83 39 1 1 1 178 84 40 1 1 1 179 85 41 1 1 1 180 86 42 1 1 1 181 87 47 1 1 1 182 88 47 1 1 1 183 89 47 1 1 1 184 90 48 1 1 1 185 91 48 1 1 1 186 92 48 1 1 1 ::: } }