{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 19_S_21_3_35_20 0.4508 0.4508 0.0000 0.3886 -2 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[56] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -3.280600 0.069800 2.066600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 -2.602800 0.619400 0.993500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 -2.347800 1.977800 0.955200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 -2.779300 2.792300 1.983800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 -3.465100 2.244600 3.060200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 -3.714800 0.878400 3.098200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 39 -3.903300 3.065400 4.101900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 -1 0 1 "" 0 6.678 0.410 8 113 -5.436300 2.892200 4.703700 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 9 15 -5.599900 1.513900 5.008000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 10 15 -5.608100 3.912900 5.677400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 11 2 -6.555200 3.254500 3.391600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -6.917000 4.565600 3.137400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -7.788600 4.856800 2.108600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -8.314300 3.823900 1.329900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 -7.949000 2.502600 1.595400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 -7.072300 2.226100 2.623900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 1 -9.223600 4.118300 0.263500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 24 -9.944900 4.351900 -0.582400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 19 3 -1.603500 2.571200 -0.213200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 41 -1.437510 3.642510 -0.026806 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 21 2 -0.269900 1.884800 -0.360200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 0.287300 1.695500 -1.626300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 1.526800 1.047600 -1.722100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 2 2.171000 0.608900 -0.550200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 16 1.601100 0.810500 0.649100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 26 2 0.410300 1.431300 0.762000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 15 -0.078100 1.597800 1.868900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.703 2.000 28 2 3.390800 -0.059500 -0.275600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 2 4.415800 -0.538900 -1.031200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 2 4.720300 -0.584900 -2.411500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 4.120800 -0.172100 -3.557400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 2.873000 0.516000 -3.890500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 2 1.836800 1.003800 -3.164300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 18 -0.355600 2.129000 -2.738200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 0 1 "" 0 6.751 1.000 35 3 -2.421400 2.375600 -1.491300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 3 -2.676600 3.607500 -2.362100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 3 -3.816300 3.002300 -1.540200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 38 41 -3.474300 -0.992300 2.095500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -2.268500 -0.014600 0.185500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -2.583900 3.854000 1.951000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -4.248100 0.449300 3.933600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -6.512800 5.363200 3.743100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -8.066800 5.881000 1.908400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -8.352200 1.698900 0.997100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -6.788600 1.204700 2.830100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 3.418119 -0.165239 0.818965 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 5.271754 -1.032222 -0.547489 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 5.693308 -1.096288 -2.453194 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 4.608019 -0.349031 -4.527613 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 2.868766 0.609623 -4.986500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 0.992058 1.493101 -3.671246 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -2.013670 1.369160 -1.666895 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -2.026688 4.431138 -2.031594 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -2.456857 3.365943 -3.412511 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 -4.538774 2.260392 -1.911148 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 -4.108642 3.325629 -0.530253 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> ::: } m_bond[120] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 38 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 39 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 19 1 1 1 10 4 3 1 1 1 11 4 5 2 1 1 12 4 40 1 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 7 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 41 1 1 1 19 7 5 1 1 1 20 7 8 1 1 1 21 8 7 1 1 1 22 8 9 2 1 1 23 8 10 2 1 1 24 8 11 1 1 1 25 9 8 2 1 1 26 10 8 2 1 1 27 11 8 1 1 1 28 11 16 2 1 1 29 11 12 1 1 1 30 12 11 1 1 1 31 12 13 2 1 1 32 12 42 1 1 1 33 13 12 2 1 1 34 13 14 1 1 1 35 13 43 1 1 1 36 14 13 1 1 1 37 14 15 2 1 1 38 14 17 1 1 1 39 15 14 2 1 1 40 15 16 1 1 1 41 15 44 1 1 1 42 16 11 2 1 1 43 16 15 1 1 1 44 16 45 1 1 1 45 17 14 1 1 1 46 17 18 3 1 1 47 18 17 3 1 1 48 19 3 1 1 1 49 19 20 1 1 1 50 19 21 1 1 1 51 19 35 1 1 1 52 20 19 1 1 1 53 21 19 1 1 1 54 21 26 1 1 1 55 21 22 2 1 1 56 22 21 2 1 1 57 22 23 1 1 1 58 22 34 1 1 1 59 23 22 1 1 1 60 23 33 1 1 1 61 23 24 2 1 1 62 24 23 2 1 1 63 24 25 1 1 1 64 24 28 1 1 1 65 25 24 1 1 1 66 25 26 1 1 1 67 26 21 1 1 1 68 26 25 1 1 1 69 26 27 2 1 1 70 27 26 2 1 1 71 28 24 1 1 1 72 28 29 2 1 1 73 28 46 1 1 1 74 29 28 2 1 1 75 29 30 1 1 1 76 29 47 1 1 1 77 30 29 1 1 1 78 30 31 2 1 1 79 30 48 1 1 1 80 31 30 2 1 1 81 31 32 1 1 1 82 31 49 1 1 1 83 32 31 1 1 1 84 32 33 2 1 1 85 32 50 1 1 1 86 33 23 1 1 1 87 33 32 2 1 1 88 33 51 1 1 1 89 34 22 1 1 1 90 35 19 1 1 1 91 35 37 1 1 1 92 35 36 1 1 1 93 35 52 1 1 1 94 36 35 1 1 1 95 36 37 1 1 1 96 36 53 1 1 1 97 36 54 1 1 1 98 37 35 1 1 1 99 37 36 1 1 1 100 37 55 1 1 1 101 37 56 1 1 1 102 38 1 1 1 1 103 39 2 1 1 1 104 40 4 1 1 1 105 41 6 1 1 1 106 42 12 1 1 1 107 43 13 1 1 1 108 44 15 1 1 1 109 45 16 1 1 1 110 46 28 1 1 1 111 47 29 1 1 1 112 48 30 1 1 1 113 49 31 1 1 1 114 50 32 1 1 1 115 51 33 1 1 1 116 52 35 1 1 1 117 53 36 1 1 1 118 54 36 1 1 1 119 55 37 1 1 1 120 56 37 1 1 1 ::: } }