{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.99990000499975 5_S_18_7_4_6 7_S_17_5_9_8 10_S_12_14_9_11 0.0086 0.0086 0.0000 0.0086 1 m_depend[9] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 r_epik_Ionization_Penalty 6 10 r_epik_Ionization_Penalty_Charging 7 10 r_epik_Ionization_Penalty_Neutral 8 10 r_epik_State_Penalty 9 10 i_epik_Tot_Q ::: } m_atom[41] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 1.246700 1.584700 -4.998600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 2.074800 1.252000 -3.755800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 3.358800 2.083900 -3.760800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 3 1.262500 1.575200 -2.500200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 2.039700 1.127400 -1.260700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 41 3.055223 1.550079 -1.268200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 7 3 1.286400 1.561800 -0.001800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 41 1.115399 2.648401 0.005756 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 9 3 2.063600 1.114000 1.237700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 1.376800 1.655100 2.493300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 41 0.318361 1.355651 2.499296 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 16.597 2.000 12 2 1.451900 3.160200 2.497800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 15 0.437500 3.815300 2.506700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 14 3 2.080000 1.105600 3.736100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 3 1.393300 1.646700 4.991700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 3 2.003800 -0.422500 3.731400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 16 -0.011000 0.962800 0.007300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 32 2.175500 -0.335300 -1.269800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 19 41 0.323538 0.986570 -4.994983 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 20 41 1.830694 1.352261 -5.901331 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 21 41 0.990550 2.654445 -4.992931 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 22 41 2.331050 0.182278 -3.761408 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 23 41 3.954136 1.844692 -2.867293 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 24 41 3.102617 3.153637 -3.755151 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 25 41 3.942760 1.851454 -4.663551 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 1.082964 2.659223 -2.448621 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 0.299255 1.045522 -2.540203 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 2.088112 0.015007 1.277869 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 3.091590 1.502017 1.185935 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 2.430717 3.662090 2.492978 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 3.134054 1.420141 3.730276 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 1.898850 1.251649 5.885207 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 0.339256 1.332127 4.997567 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 1.448116 2.745328 4.994995 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 2.509358 -0.817560 4.624898 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 2.497510 -0.811444 2.828641 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 0.949752 -0.737059 3.737282 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 42 -0.702120 1.160245 0.839987 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.388 2.000 39 43 2.734273 -0.657195 -0.378645 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.884 0.770 40 43 2.717124 -0.647612 -2.174844 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.884 0.770 41 44 1.176784 -0.796295 -1.262725 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.884 0.770 ::: } m_bond[80] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 19 1 3 1 20 1 4 1 21 1 5 2 1 1 6 2 3 1 7 2 4 1 8 2 22 1 9 3 2 1 10 3 23 1 11 3 24 1 12 3 25 1 13 4 2 1 14 4 5 1 15 4 26 1 16 4 27 1 17 5 4 1 18 5 6 1 19 5 7 1 20 5 18 1 21 6 5 1 22 7 5 1 23 7 8 1 24 7 9 1 25 7 17 1 26 8 7 1 27 9 7 1 28 9 10 1 29 9 28 1 30 9 29 1 31 10 9 1 32 10 11 1 33 10 12 1 34 10 14 1 35 11 10 1 36 12 10 1 37 12 13 2 38 12 30 1 39 13 12 2 40 14 10 1 41 14 15 1 42 14 16 1 43 14 31 1 44 15 14 1 45 15 32 1 46 15 33 1 47 15 34 1 48 16 14 1 49 16 35 1 50 16 36 1 51 16 37 1 52 17 7 1 53 17 38 1 54 18 5 1 55 18 39 1 56 18 40 1 57 18 41 1 58 19 1 1 59 20 1 1 60 21 1 1 61 22 2 1 62 23 3 1 63 24 3 1 64 25 3 1 65 26 4 1 66 27 4 1 67 28 9 1 68 29 9 1 69 30 12 1 70 31 14 1 71 32 15 1 72 33 15 1 73 34 15 1 74 35 16 1 75 36 16 1 76 37 16 1 77 38 17 1 78 39 18 1 79 40 18 1 80 41 18 1 ::: } }