{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0054 0.0052 0.0002 -0.0000 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[62] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.946200 6.178500 -2.810400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 2 -2.238400 5.543800 -3.255900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -3.334400 5.355900 -2.466300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -4.355500 4.713300 -3.312300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -5.661700 4.281600 -3.091500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -6.372000 3.703300 -4.120300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -5.792700 3.550300 -5.371900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 -4.502000 3.972500 -5.604600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -3.767700 4.558600 -4.578500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 25 -2.487900 5.068300 -4.506700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 11 43 -1.710947 5.128373 -5.283060 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.788 1.500 12 2 -3.472500 5.728000 -1.048200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -3.169900 4.939700 0.055900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 -3.474400 5.764200 1.243600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 15 -3.334000 5.420000 2.400200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 16 25 -3.932100 6.958400 0.831200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 17 2 -3.963600 7.013900 -0.511000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 15 -4.330000 7.964700 -1.172600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 19 2 -2.645900 3.563600 0.044200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 -3.377100 2.412300 0.031200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 25 -2.540900 1.338400 0.021700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 22 2 -1.225900 1.755400 0.017400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 -1.228600 3.160300 0.029300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 2 -0.024700 3.860700 0.021600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 25 2 1.166900 3.168900 0.007500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 2 1.171100 1.781800 0.000400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 2 -0.012600 1.075800 0.008000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 28 3 -2.975300 -0.060700 0.017400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 3 -3.119200 -0.554400 1.458400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 3 -3.572900 -2.015600 1.454000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 31 32 -3.711000 -2.489600 2.837500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 32 3 -4.800800 -1.787400 3.528300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 33 3 -3.912900 -3.944100 2.878000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 34 3 -4.882300 2.340200 0.037700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 35 41 -1.025781 6.468360 -1.752266 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -0.746571 7.071318 -3.421158 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -0.123103 5.459074 -2.932617 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -6.115200 4.400100 -2.118500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -7.384700 3.367700 -3.952200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -6.359200 3.096100 -6.171500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -4.060600 3.848300 -6.582400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 43 -4.217313 7.722766 1.569034 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 10.559 2.000 43 41 -0.025100 4.940700 0.027000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 2.102100 3.709200 0.001400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 2.111000 1.249900 -0.011400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 0.002100 -0.004100 0.002000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.944392 -0.142144 -0.496631 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.228935 -0.674780 -0.507810 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -2.150088 -0.472913 1.972387 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -3.865551 0.059701 1.983604 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -4.542023 -2.097055 0.940030 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -2.826574 -2.629711 0.928772 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -4.881871 -2.160919 4.559761 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -5.747377 -1.967421 2.997655 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -4.589155 -0.708078 3.544731 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -4.013011 -4.271396 3.923397 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -3.049845 -4.447029 2.417350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 -4.827019 -4.202949 2.323578 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 -5.198972 1.286856 0.024040 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 -5.277797 2.853557 -0.851146 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 41 -5.268795 2.827560 0.944950 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 62 44 -2.773881 -2.263525 3.367310 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 9.051 1.150 ::: } m_bond[132] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 35 1 3 1 36 1 4 1 37 1 5 2 1 1 6 2 10 1 7 2 3 2 8 3 2 2 9 3 4 1 10 3 12 1 11 4 3 1 12 4 9 2 13 4 5 1 14 5 4 1 15 5 6 2 16 5 38 1 17 6 5 2 18 6 7 1 19 6 39 1 20 7 6 1 21 7 8 2 22 7 40 1 23 8 7 2 24 8 9 1 25 8 41 1 26 9 4 2 27 9 8 1 28 9 10 1 29 10 2 1 30 10 9 1 31 10 11 1 32 11 10 1 33 12 3 1 34 12 17 1 35 12 13 2 36 13 12 2 37 13 14 1 38 13 19 1 39 14 13 1 40 14 15 2 41 14 16 1 42 15 14 2 43 16 14 1 44 16 17 1 45 16 42 1 46 17 12 1 47 17 16 1 48 17 18 2 49 18 17 2 50 19 13 1 51 19 23 1 52 19 20 2 53 20 19 2 54 20 21 1 55 20 34 1 56 21 20 1 57 21 22 1 58 21 28 1 59 22 21 1 60 22 27 2 61 22 23 1 62 23 19 1 63 23 22 1 64 23 24 2 65 24 23 2 66 24 25 1 67 24 43 1 68 25 24 1 69 25 26 2 70 25 44 1 71 26 25 2 72 26 27 1 73 26 45 1 74 27 22 2 75 27 26 1 76 27 46 1 77 28 21 1 78 28 29 1 79 28 47 1 80 28 48 1 81 29 28 1 82 29 30 1 83 29 49 1 84 29 50 1 85 30 29 1 86 30 31 1 87 30 51 1 88 30 52 1 89 31 30 1 90 31 32 1 91 31 33 1 92 31 62 1 93 32 31 1 94 32 53 1 95 32 54 1 96 32 55 1 97 33 31 1 98 33 56 1 99 33 57 1 100 33 58 1 101 34 20 1 102 34 59 1 103 34 60 1 104 34 61 1 105 35 1 1 106 36 1 1 107 37 1 1 108 38 5 1 109 39 6 1 110 40 7 1 111 41 8 1 112 42 16 1 113 43 24 1 114 44 25 1 115 45 26 1 116 46 27 1 117 47 28 1 118 48 28 1 119 49 29 1 120 50 29 1 121 51 30 1 122 52 30 1 123 53 32 1 124 54 32 1 125 55 32 1 126 56 33 1 127 57 33 1 128 58 33 1 129 59 34 1 130 60 34 1 131 61 34 1 132 62 31 1 ::: } }