{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.499999999987753 0.0000 0.0000 0.0000 0.4107 0 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[37] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 5.615600 2.017200 -0.503300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 25 4.199300 1.987100 -0.129800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 3 3 3.419100 3.227000 -0.115000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 3.614100 0.818800 0.200300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 15 4.266200 -0.208700 0.203800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.714 2.000 6 2 2.190700 0.785600 0.555400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 2 1.424300 -0.337200 0.686200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 2 0.124600 0.086100 1.034400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 0.149200 1.463000 1.103100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 25 1.397900 1.881000 0.813400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 11 43 1.824905 2.893418 0.761661 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 12.235 2.000 12 2 -1.045200 -0.784000 1.280200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -1.946800 -0.678000 2.330200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -2.896700 -1.703100 2.170400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 25 -2.589400 -2.390900 1.103400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.722 2.000 16 25 -1.438900 -1.845100 0.522600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 43 -0.864047 -2.125317 -0.372399 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 12.967 2.000 18 2 -1.916200 0.330400 3.416600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -0.740400 0.552900 4.131800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 2 -0.716400 1.496600 5.138500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 -1.859100 2.213200 5.445700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -3.030200 1.992700 4.743300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 -3.064600 1.055700 3.730700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 41 6.028920 0.998893 -0.456209 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 25 41 6.164605 2.668334 0.192845 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 5.716622 2.406972 -1.526956 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 2.385016 3.005906 0.187964 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 3.419264 3.672323 -1.120827 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 3.867247 3.933686 0.598974 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 1.751600 -1.357100 0.548500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 -0.690100 2.098700 1.343500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 -3.736000 -1.892700 2.823200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 0.151100 -0.009200 3.895800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 0.195000 1.672700 5.690500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -1.836700 2.948000 6.236900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -3.919300 2.555100 4.987500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -3.979300 0.884800 3.182500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> ::: } m_bond[78] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 24 1 1 1 3 1 25 1 1 1 4 1 26 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 3 2 1 1 1 9 3 27 1 1 1 10 3 28 1 1 1 11 3 29 1 1 1 12 4 2 1 1 1 13 4 5 2 1 1 14 4 6 1 1 1 15 5 4 2 1 1 16 6 4 1 1 1 17 6 10 1 1 1 18 6 7 2 1 1 19 7 6 2 1 1 20 7 8 1 1 1 21 7 30 1 1 1 22 8 7 1 1 1 23 8 9 2 1 1 24 8 12 1 1 1 25 9 8 2 1 1 26 9 10 1 1 1 27 9 31 1 1 1 28 10 6 1 1 1 29 10 9 1 1 1 30 10 11 1 1 1 31 11 10 1 1 1 32 12 8 1 1 1 33 12 16 1 1 1 34 12 13 2 1 1 35 13 12 2 1 1 36 13 14 1 1 1 37 13 18 1 1 1 38 14 13 1 1 1 39 14 15 2 1 1 40 14 32 1 1 1 41 15 14 2 1 1 42 15 16 1 1 1 43 16 12 1 1 1 44 16 15 1 1 1 45 16 17 1 1 1 46 17 16 1 1 1 47 18 13 1 1 1 48 18 23 2 1 1 49 18 19 1 1 1 50 19 18 1 1 1 51 19 20 2 1 1 52 19 33 1 1 1 53 20 19 2 1 1 54 20 21 1 1 1 55 20 34 1 1 1 56 21 20 1 1 1 57 21 22 2 1 1 58 21 35 1 1 1 59 22 21 2 1 1 60 22 23 1 1 1 61 22 36 1 1 1 62 23 18 2 1 1 63 23 22 1 1 1 64 23 37 1 1 1 65 24 1 1 1 1 66 25 1 1 1 1 67 26 1 1 1 1 68 27 3 1 1 1 69 28 3 1 1 1 70 29 3 1 1 1 71 30 7 1 1 1 72 31 9 1 1 1 73 32 14 1 1 1 74 33 19 1 1 1 75 34 20 1 1 1 76 35 21 1 1 1 77 36 22 1 1 1 78 37 23 1 1 1 ::: } }