{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0091 0.0000 0.0091 -0.0000 0 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[48] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -3.659200 2.571500 7.173300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 2 -2.949300 2.262900 6.029200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -1.683600 2.785500 5.837400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -1.123000 3.613800 6.792100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -1.830800 3.929800 7.935600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -3.101100 3.406700 8.130500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 16 -3.797500 3.712200 9.256600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 8 2 -3.870200 2.773000 10.236300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -3.166300 1.583800 10.112200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -3.236200 0.633400 11.112200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 -4.017700 0.861200 12.231100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -4.725400 2.043900 12.353900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -4.652900 2.999700 11.359300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 57 -4.110100 -0.338100 13.482800 900 " " X " " 9 0.00000 0.00000 "UNK " " " " " 17 0 "" <> <> 15 113 -0.780600 2.389500 4.377100 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 "" <> <> 16 15 -1.294900 1.131200 3.962800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 17 15 0.584600 2.528000 4.746300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 18 3 -1.238500 3.675600 3.182600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 3 -0.425600 3.492500 1.899400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.725500 2.117500 1.294600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.030700 1.974900 -0.028900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 16 -0.351100 3.032500 -0.910800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 23 3 -0.051200 4.340000 -0.418200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 3 -0.811000 4.577800 0.889500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 25 2 1.044400 3.596500 2.214700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 15 1.760500 2.625100 2.094800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 27 25 1.563200 4.769000 2.630000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 0.088 1.200 28 16 2.960300 4.896600 2.822200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 29 41 -4.647900 2.163300 7.322500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -3.383400 1.613200 5.283600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -0.132600 4.017400 6.641800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -1.394200 4.580400 8.678900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -2.560200 1.403400 9.236700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -2.684300 -0.290200 11.018400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -5.334600 2.220000 13.228200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -5.204800 3.923000 11.455800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -2.311063 3.596375 2.951663 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -1.028061 4.666323 3.611767 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -0.400829 1.331398 1.992190 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -1.806603 2.024083 1.114349 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 1.113133 2.027058 0.159828 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -0.214991 1.006474 -0.489103 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 1.030204 4.423660 -0.234986 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.356246 5.090924 -1.161880 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -1.893831 4.535057 0.700690 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -0.548259 5.565989 1.295025 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 43 0.901310 5.626865 2.819657 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.526 2.000 48 42 3.383713 5.853588 3.161162 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.813 0.500 ::: } m_bond[100] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 6 2 2 1 2 1 3 1 29 1 4 2 1 1 5 2 3 2 6 2 30 1 7 3 2 2 8 3 4 1 9 3 15 1 10 4 3 1 11 4 5 2 12 4 31 1 13 5 4 2 14 5 6 1 15 5 32 1 16 6 1 2 17 6 5 1 18 6 7 1 19 7 6 1 20 7 8 1 21 8 7 1 22 8 13 2 23 8 9 1 24 9 8 1 25 9 10 2 26 9 33 1 27 10 9 2 28 10 11 1 29 10 34 1 30 11 10 1 31 11 12 2 32 11 14 1 33 12 11 2 34 12 13 1 35 12 35 1 36 13 8 2 37 13 12 1 38 13 36 1 39 14 11 1 40 15 3 1 41 15 16 2 42 15 17 2 43 15 18 1 44 16 15 2 45 17 15 2 46 18 15 1 47 18 19 1 48 18 37 1 49 18 38 1 50 19 18 1 51 19 24 1 52 19 20 1 53 19 25 1 54 20 19 1 55 20 21 1 56 20 39 1 57 20 40 1 58 21 20 1 59 21 22 1 60 21 41 1 61 21 42 1 62 22 21 1 63 22 23 1 64 23 22 1 65 23 24 1 66 23 43 1 67 23 44 1 68 24 19 1 69 24 23 1 70 24 45 1 71 24 46 1 72 25 19 1 73 25 26 2 74 25 27 1 75 26 25 2 76 27 25 1 77 27 28 1 78 27 47 1 79 28 27 1 80 28 48 1 81 29 1 1 82 30 2 1 83 31 4 1 84 32 5 1 85 33 9 1 86 34 10 1 87 35 12 1 88 36 13 1 89 37 18 1 90 38 18 1 91 39 20 1 92 40 20 1 93 41 21 1 94 42 21 1 95 43 23 1 96 44 23 1 97 45 24 1 98 46 24 1 99 47 27 1 100 48 28 1 ::: } }