{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0000 0.0000 0.0000 -0.0000 0 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[42] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 3.934800 1.114300 5.731400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 2 4.283200 0.277600 4.686800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 2 3.833800 0.547200 3.403300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 2 3.029600 1.663700 3.170200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 2 2.689200 2.499800 4.223200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 2 3.138500 2.220600 5.500600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 49 2.454500 2.014200 1.542000 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 8 2 1.169100 0.816700 1.407100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 0.497700 0.654700 0.208600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -0.496000 -0.438900 0.055800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -0.082400 -1.758600 0.087200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 49 -1.243100 -3.052700 -0.200300 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 13 2 -0.224500 -4.454200 0.120700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 0.082100 -4.810400 1.434800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 0.883700 -5.914600 1.680200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 2 1.376700 -6.659600 0.624400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 17 2 1.072700 -6.307100 -0.677300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 0.270400 -5.210100 -0.931600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 25 -0.418500 -4.055800 2.501400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.151 1.000 20 25 1.236400 -2.060800 0.343000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 21 1 -1.882000 -0.127100 -0.124000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 24 -2.981500 0.120300 -0.266700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 23 1 0.760400 1.541300 -0.884800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 24 0.968900 2.244700 -1.752200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 25 25 0.829100 0.046000 2.496300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 25 4.185800 -0.297300 2.344700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.151 1.000 27 41 4.286100 0.902900 6.730600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 4.905700 -0.585600 4.870800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 2.070800 3.367300 4.045800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 2.869700 2.870800 6.320000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 1.123000 -6.193200 2.695800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 2.000700 -7.519600 0.817500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 1.460000 -6.892500 -1.498100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 0.031700 -4.940000 -1.949700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 43 -0.175787 -4.338057 3.536495 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.349 2.000 36 43 -1.054777 -3.180289 2.304849 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.349 2.000 37 43 1.565346 -3.110167 0.367982 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 43 1.961000 -1.252851 0.522368 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 43 0.026614 -0.701613 2.412092 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 43 1.359967 0.177917 3.450647 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 43 3.828302 -0.081820 1.326975 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.349 2.000 42 43 4.820030 -1.176702 2.530183 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.349 2.000 ::: } m_bond[86] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 6 2 1 1 2 1 2 1 1 1 3 1 27 1 1 1 4 2 1 1 1 1 5 2 3 2 1 1 6 2 28 1 1 1 7 3 2 2 1 1 8 3 4 1 1 1 9 3 26 1 1 1 10 4 3 1 1 1 11 4 5 2 1 1 12 4 7 1 1 1 13 5 4 2 1 1 14 5 6 1 1 1 15 5 29 1 1 1 16 6 1 2 1 1 17 6 5 1 1 1 18 6 30 1 1 1 19 7 4 1 1 1 20 7 8 1 1 1 21 8 7 1 1 1 22 8 9 2 1 1 23 8 25 1 1 1 24 9 8 2 1 1 25 9 10 1 1 1 26 9 23 1 1 1 27 10 9 1 1 1 28 10 11 2 1 1 29 10 21 1 1 1 30 11 10 2 1 1 31 11 12 1 1 1 32 11 20 1 1 1 33 12 11 1 1 1 34 12 13 1 1 1 35 13 12 1 1 1 36 13 18 2 1 1 37 13 14 1 1 1 38 14 13 1 1 1 39 14 15 2 1 1 40 14 19 1 1 1 41 15 14 2 1 1 42 15 16 1 1 1 43 15 31 1 1 1 44 16 15 1 1 1 45 16 17 2 1 1 46 16 32 1 1 1 47 17 16 2 1 1 48 17 18 1 1 1 49 17 33 1 1 1 50 18 13 2 1 1 51 18 17 1 1 1 52 18 34 1 1 1 53 19 14 1 1 1 54 19 35 1 1 1 55 19 36 1 1 1 56 20 11 1 1 1 57 20 37 1 1 1 58 20 38 1 1 1 59 21 10 1 1 1 60 21 22 3 1 1 61 22 21 3 1 1 62 23 9 1 1 1 63 23 24 3 1 1 64 24 23 3 1 1 65 25 8 1 1 1 66 25 39 1 1 1 67 25 40 1 1 1 68 26 3 1 1 1 69 26 41 1 1 1 70 26 42 1 1 1 71 27 1 1 1 1 72 28 2 1 1 1 73 29 5 1 1 1 74 30 6 1 1 1 75 31 15 1 1 1 76 32 16 1 1 1 77 33 17 1 1 1 78 34 18 1 1 1 79 35 19 1 1 1 80 36 19 1 1 1 81 37 20 1 1 1 82 38 20 1 1 1 83 39 25 1 1 1 84 40 25 1 1 1 85 41 26 1 1 1 86 42 26 1 1 1 ::: } }