{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 12_S_17_14_11_13 0.0112 0.0112 0.0000 0.0111 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[36] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 0.089600 1.025700 8.610900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 0.604000 0.670700 7.214400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -0.310100 1.297400 6.159600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 25 0.182400 0.957500 4.822400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 5 2 -0.482500 1.412900 3.708600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 31 -1.551100 2.147100 3.842300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 7 44 -2.083099 2.511474 2.951116 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.902 1.430 8 25 -0.020300 1.093900 2.453700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 9 3 -0.728800 1.579200 1.266800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 -0.012700 1.085800 0.008000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -0.752700 1.592700 -1.231500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 3 -0.036600 1.099200 -2.490300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 41 0.090961 0.006846 -2.468125 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 14 2 -0.831900 1.493900 -3.708000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 15 -0.506300 2.461000 -4.354900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 16 18 -1.902000 0.770900 -4.074000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 2.131 0.500 17 32 1.300500 1.703600 -2.561700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 18 44 1.815379 1.348823 -3.466705 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 19 44 1.880993 1.415582 -1.672839 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 20 41 0.746816 0.575118 9.369216 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 21 41 -0.932464 0.638292 8.734595 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 22 41 0.084636 2.118907 8.732860 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 23 41 1.626064 1.058108 7.090705 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 24 41 0.609006 -0.422503 7.092406 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 25 41 -1.332161 0.909995 6.283329 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -0.315104 2.390606 6.281564 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 43 1.084243 0.337877 4.709495 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.203 1.430 28 43 0.881532 0.474247 2.340872 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.203 1.430 29 41 -1.760779 1.198465 1.274596 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -0.743730 2.679082 1.272826 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 1.019283 1.466523 0.000213 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 0.002217 -0.014082 0.001915 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -1.784700 1.212024 -1.223635 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -0.767566 2.692583 -1.225452 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 44 -1.920948 2.402355 4.846320 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.902 1.430 36 44 1.206237 2.798918 -2.599015 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 ::: } m_bond[70] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 20 1 3 1 21 1 4 1 22 1 5 2 1 1 6 2 3 1 7 2 23 1 8 2 24 1 9 3 2 1 10 3 4 1 11 3 25 1 12 3 26 1 13 4 3 1 14 4 5 1 15 4 27 1 16 5 4 1 17 5 6 2 18 5 8 1 19 6 5 2 20 6 7 1 21 6 35 1 22 7 6 1 23 8 5 1 24 8 9 1 25 8 28 1 26 9 8 1 27 9 10 1 28 9 29 1 29 9 30 1 30 10 9 1 31 10 11 1 32 10 31 1 33 10 32 1 34 11 10 1 35 11 12 1 36 11 33 1 37 11 34 1 38 12 11 1 39 12 13 1 40 12 14 1 41 12 17 1 42 13 12 1 43 14 12 1 44 14 15 2 45 14 16 1 46 15 14 2 47 16 14 1 48 17 12 1 49 17 18 1 50 17 19 1 51 17 36 1 52 18 17 1 53 19 17 1 54 20 1 1 55 21 1 1 56 22 1 1 57 23 2 1 58 24 2 1 59 25 3 1 60 26 3 1 61 27 4 1 62 28 8 1 63 29 9 1 64 30 9 1 65 31 10 1 66 32 10 1 67 33 11 1 68 34 11 1 69 35 6 1 70 36 17 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 12_S_17_14_11_13 0.0112 0.0112 0.0000 0.0111 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[36] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.134600 12.241000 -6.134800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 0.102200 11.460800 -4.840100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 0.122700 9.961500 -5.144700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 25 0.349300 9.214500 -3.905100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 5 2 0.407500 7.841100 -3.931000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 31 0.260900 7.203800 -5.058500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 7 44 0.307455 6.104982 -5.079279 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.902 1.430 8 25 0.620200 7.140000 -2.767600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 9 3 0.682100 5.676500 -2.795300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 0.926200 5.149600 -1.379800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 0.990900 3.621200 -1.408600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 3 1.235000 3.094300 0.006900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 41 0.487442 3.491538 0.709295 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 14 2 1.176500 1.588400 -0.000600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 15 2.198600 0.944200 -0.013900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 16 18 -0.011000 0.962800 0.007300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 2.131 0.500 17 32 2.558900 3.530600 0.470300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 18 44 2.734347 3.151754 1.487990 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 19 44 2.601564 4.629759 0.475772 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 20 41 -0.149343 13.318888 -5.915848 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 21 41 -1.098930 11.942344 -6.571689 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 22 41 0.674240 12.022646 -6.847610 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 23 41 1.066530 11.759456 -4.403211 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 24 41 -0.706606 11.679146 -4.127248 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 25 41 -0.841606 9.662929 -5.581701 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 0.931561 9.743158 -5.857490 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 43 0.472887 9.752397 -2.953579 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.203 1.430 28 43 0.743896 7.677812 -1.816045 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.203 1.430 29 41 -0.269000 5.276451 -3.176574 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 1.504148 5.356626 -3.452505 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 1.877277 5.549742 -0.998566 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 0.104136 5.469481 -0.722619 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 0.039819 3.221085 -1.789852 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 1.812967 3.301301 -2.065768 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 44 0.090624 7.764778 -5.989257 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.902 1.430 36 44 3.332112 3.136984 -0.205873 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 8.772 0.900 ::: } m_bond[70] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 20 1 3 1 21 1 4 1 22 1 5 2 1 1 6 2 3 1 7 2 23 1 8 2 24 1 9 3 2 1 10 3 4 1 11 3 25 1 12 3 26 1 13 4 3 1 14 4 5 1 15 4 27 1 16 5 4 1 17 5 6 2 18 5 8 1 19 6 5 2 20 6 7 1 21 6 35 1 22 7 6 1 23 8 5 1 24 8 9 1 25 8 28 1 26 9 8 1 27 9 10 1 28 9 29 1 29 9 30 1 30 10 9 1 31 10 11 1 32 10 31 1 33 10 32 1 34 11 10 1 35 11 12 1 36 11 33 1 37 11 34 1 38 12 11 1 39 12 13 1 40 12 14 1 41 12 17 1 42 13 12 1 43 14 12 1 44 14 15 2 45 14 16 1 46 15 14 2 47 16 14 1 48 17 12 1 49 17 18 1 50 17 19 1 51 17 36 1 52 18 17 1 53 19 17 1 54 20 1 1 55 21 1 1 56 22 1 1 57 23 2 1 58 24 2 1 59 25 3 1 60 26 3 1 61 27 4 1 62 28 8 1 63 29 9 1 64 30 9 1 65 31 10 1 66 32 10 1 67 33 11 1 68 34 11 1 69 35 6 1 70 36 17 1 ::: } }