{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.5 0.0662 0.0662 0.0000 0.4107 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[57] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.062500 1.030700 2.428600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 32 -0.701400 1.560200 1.216400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 3 3 -0.012700 1.085800 0.008000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 -0.753800 1.593300 -1.231200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -0.806200 3.061600 -1.200500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.393 0.400 6 3 -1.495300 3.535900 0.007700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -0.754200 3.028500 1.246900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 2 -1.410500 3.562800 -2.348200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 -1.862500 2.689100 -3.333300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -2.466200 3.181700 -4.467600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -2.615400 4.561700 -4.635100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -2.155200 5.436700 -3.646500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -1.557200 4.937500 -2.512200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -3.257200 5.093300 -5.852000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 15 -3.386700 6.293900 -5.996200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -3.000 2.000 16 25 -3.700300 4.248500 -6.804100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 -4.308500 4.752300 -7.957200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 -4.830300 3.954600 -9.073200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -5.052400 2.727000 -9.611500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 25 -5.671200 2.890300 -10.817700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 21 2 -5.861000 4.225400 -11.069400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -5.368700 4.935800 -10.032500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 25 -5.138100 6.176200 -9.463400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 24 43 -5.448251 7.089893 -9.991578 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 12.544 2.000 25 25 -4.505000 6.010500 -8.229100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.032 2.000 26 2 -6.041500 1.888000 -11.639100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 15 -5.829600 0.740500 -11.325700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -6.719800 2.198500 -12.948600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 2 -7.027400 0.912900 -13.672200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 2 -8.140000 0.141400 -13.606300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -8.203800 -1.009500 -14.369200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 -7.151900 -1.332700 -15.160700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 49 -6.024300 0.014900 -14.844700 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 34 41 -0.036414 -0.067885 2.379299 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -0.636821 1.344548 3.312712 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 0.964117 1.418970 2.501433 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 1.019238 1.466655 0.000729 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 0.002366 -0.014083 0.002448 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -0.223234 1.263252 -2.136500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -1.776792 1.189020 -1.237854 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -1.510570 4.635780 0.013167 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -2.527169 3.154854 0.014764 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -1.284544 3.357574 2.152685 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 0.269037 3.432151 1.254106 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -1.743000 1.623400 -3.205300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -2.820600 2.503200 -5.229500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -2.269300 6.503200 -3.772800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -1.201500 5.612900 -1.748100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 43 -3.583247 3.162560 -6.673593 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.515 2.000 50 41 -4.781100 1.782400 -9.163600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -6.327400 4.639600 -11.951000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -7.655449 2.744097 -12.756545 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -6.054723 2.817957 -13.568234 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -8.964400 0.421900 -12.967500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 -9.078800 -1.641700 -14.335400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 -7.029400 -2.182600 -15.815600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 44 -1.734625 1.183804 1.188600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.928 0.300 ::: } m_bond[122] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 34 1 1 1 3 1 35 1 1 1 4 1 36 1 1 1 5 2 1 1 1 1 6 2 7 1 1 1 7 2 3 1 1 1 8 2 57 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 37 1 1 1 12 3 38 1 1 1 13 4 3 1 1 1 14 4 5 1 1 1 15 4 39 1 1 1 16 4 40 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 8 1 1 1 20 6 5 1 1 1 21 6 7 1 1 1 22 6 41 1 1 1 23 6 42 1 1 1 24 7 2 1 1 1 25 7 6 1 1 1 26 7 43 1 1 1 27 7 44 1 1 1 28 8 5 1 1 1 29 8 13 2 1 1 30 8 9 1 1 1 31 9 8 1 1 1 32 9 10 2 1 1 33 9 45 1 1 1 34 10 9 2 1 1 35 10 11 1 1 1 36 10 46 1 1 1 37 11 10 1 1 1 38 11 12 2 1 1 39 11 14 1 1 1 40 12 11 2 1 1 41 12 13 1 1 1 42 12 47 1 1 1 43 13 8 2 1 1 44 13 12 1 1 1 45 13 48 1 1 1 46 14 11 1 1 1 47 14 15 2 1 1 48 14 16 1 1 1 49 15 14 2 1 1 50 16 14 1 1 1 51 16 17 1 1 1 52 16 49 1 1 1 53 17 16 1 1 1 54 17 25 2 1 1 55 17 18 1 1 1 56 18 17 1 1 1 57 18 22 1 1 1 58 18 19 2 1 1 59 19 18 2 1 1 60 19 20 1 1 1 61 19 50 1 1 1 62 20 19 1 1 1 63 20 21 1 1 1 64 20 26 1 1 1 65 21 20 1 1 1 66 21 22 2 1 1 67 21 51 1 1 1 68 22 18 1 1 1 69 22 21 2 1 1 70 22 23 1 1 1 71 23 22 1 1 1 72 23 24 1 1 1 73 23 25 1 1 1 74 24 23 1 1 1 75 25 17 2 1 1 76 25 23 1 1 1 77 26 20 1 1 1 78 26 27 2 1 1 79 26 28 1 1 1 80 27 26 2 1 1 81 28 26 1 1 1 82 28 29 1 1 1 83 28 52 1 1 1 84 28 53 1 1 1 85 29 28 1 1 1 86 29 33 1 1 1 87 29 30 2 1 1 88 30 29 2 1 1 89 30 31 1 1 1 90 30 54 1 1 1 91 31 30 1 1 1 92 31 32 2 1 1 93 31 55 1 1 1 94 32 31 2 1 1 95 32 33 1 1 1 96 32 56 1 1 1 97 33 29 1 1 1 98 33 32 1 1 1 99 34 1 1 1 1 100 35 1 1 1 1 101 36 1 1 1 1 102 37 3 1 1 1 103 38 3 1 1 1 104 39 4 1 1 1 105 40 4 1 1 1 106 41 6 1 1 1 107 42 6 1 1 1 108 43 7 1 1 1 109 44 7 1 1 1 110 45 9 1 1 1 111 46 10 1 1 1 112 47 12 1 1 1 113 48 13 1 1 1 114 49 16 1 1 1 115 50 19 1 1 1 116 51 21 1 1 1 117 52 28 1 1 1 118 53 28 1 1 1 119 54 30 1 1 1 120 55 31 1 1 1 121 56 32 1 1 1 122 57 2 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 0.5 0.0662 0.0662 0.0000 0.4107 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[57] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.115929 1.030936 2.451160 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 32 -0.749381 1.560626 1.236187 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 3 3 -0.056966 1.084166 0.030724 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 -0.792553 1.592010 -1.211616 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -0.842569 3.060419 -1.182186 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.348 0.400 6 3 -1.535383 3.536780 0.023075 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -0.799796 3.029036 1.265415 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 2 -1.441711 3.561798 -2.332510 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 -1.891503 2.688141 -3.318658 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -2.490109 3.180929 -4.455572 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -2.636332 4.561056 -4.624639 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -2.178351 5.436002 -3.634962 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -1.585456 4.936624 -2.498063 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -3.272663 5.092848 -5.844325 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 15 -3.399578 6.293560 -5.989887 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 16 25 -3.713629 4.248100 -6.797461 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 -4.316646 4.752082 -7.953201 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 1 -4.835617 3.954447 -9.070565 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -5.057787 2.726829 -9.608796 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 25 -5.669022 2.890638 -10.818957 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 21 2 -5.835408 4.226626 -11.082242 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 1 -5.343573 4.936918 -10.045047 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 25 -5.100408 6.177735 -9.482120 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.005 2.000 24 43 -4.148936 6.785186 -7.533189 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.511 2.000 25 25 -4.483105 6.011340 -8.239937 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 2 -6.044216 1.888226 -11.637997 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 15 -5.856157 0.739851 -11.312812 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -6.698249 2.199691 -12.959557 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 2 -7.016925 0.913751 -13.677740 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 2 -8.143158 0.161459 -13.622161 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -8.215265 -0.994179 -14.377116 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 -7.157634 -1.341094 -15.150739 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 49 -6.012239 -0.010047 -14.828641 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 34 41 -0.091528 -0.067728 2.402760 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -0.693024 1.346411 3.332883 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 0.911067 1.417515 2.527556 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 0.975639 1.463262 0.027042 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -0.043751 -0.015745 0.026032 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -0.259161 1.260393 -2.114680 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -1.816200 1.189463 -1.221809 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -1.548802 4.636688 0.027680 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -2.567919 3.157493 0.026550 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -1.332969 3.359678 2.168964 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 0.224092 3.430953 1.276161 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -1.774296 1.622334 -3.189431 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -2.842806 2.502470 -5.218299 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -2.290162 6.502601 -3.762468 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -1.231473 5.611982 -1.733130 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 43 -3.598913 3.162059 -6.665722 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.599 2.000 50 41 -4.789775 1.782100 -9.159192 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -6.286066 4.641494 -11.971680 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -7.627277 2.762312 -12.785302 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -6.013995 2.803077 -13.574149 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -8.971859 0.460685 -12.997581 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 -9.101154 -1.611411 -14.351237 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 -7.039991 -2.198042 -15.797292 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 44 -1.783133 1.185966 1.204789 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.928 0.300 ::: } m_bond[122] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 34 1 1 1 3 1 35 1 1 1 4 1 36 1 1 1 5 2 1 1 1 1 6 2 7 1 1 1 7 2 3 1 1 1 8 2 57 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 37 1 1 1 12 3 38 1 1 1 13 4 3 1 1 1 14 4 5 1 1 1 15 4 39 1 1 1 16 4 40 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 8 1 1 1 20 6 5 1 1 1 21 6 7 1 1 1 22 6 41 1 1 1 23 6 42 1 1 1 24 7 2 1 1 1 25 7 6 1 1 1 26 7 43 1 1 1 27 7 44 1 1 1 28 8 5 1 1 1 29 8 13 2 1 1 30 8 9 1 1 1 31 9 8 1 1 1 32 9 10 2 1 1 33 9 45 1 1 1 34 10 9 2 1 1 35 10 11 1 1 1 36 10 46 1 1 1 37 11 10 1 1 1 38 11 12 2 1 1 39 11 14 1 1 1 40 12 11 2 1 1 41 12 13 1 1 1 42 12 47 1 1 1 43 13 8 2 1 1 44 13 12 1 1 1 45 13 48 1 1 1 46 14 11 1 1 1 47 14 15 2 1 1 48 14 16 1 1 1 49 15 14 2 1 1 50 16 14 1 1 1 51 16 17 1 1 1 52 16 49 1 1 1 53 17 16 1 1 1 54 17 18 2 1 1 55 17 25 1 1 1 56 18 17 2 1 1 57 18 19 2 1 1 58 18 22 1 1 1 59 19 18 2 1 1 60 19 20 1 1 1 61 19 50 1 1 1 62 20 19 1 1 1 63 20 21 1 1 1 64 20 26 1 1 1 65 21 20 1 1 1 66 21 22 2 1 1 67 21 51 1 1 1 68 22 18 1 1 1 69 22 21 2 1 1 70 22 23 2 1 1 71 23 22 2 1 1 72 23 25 1 1 1 73 24 25 1 1 1 74 25 17 1 1 1 75 25 23 1 1 1 76 25 24 1 1 1 77 26 20 1 1 1 78 26 27 2 1 1 79 26 28 1 1 1 80 27 26 2 1 1 81 28 26 1 1 1 82 28 29 1 1 1 83 28 52 1 1 1 84 28 53 1 1 1 85 29 28 1 1 1 86 29 33 1 1 1 87 29 30 2 1 1 88 30 29 2 1 1 89 30 31 1 1 1 90 30 54 1 1 1 91 31 30 1 1 1 92 31 32 2 1 1 93 31 55 1 1 1 94 32 31 2 1 1 95 32 33 1 1 1 96 32 56 1 1 1 97 33 29 1 1 1 98 33 32 1 1 1 99 34 1 1 1 1 100 35 1 1 1 1 101 36 1 1 1 1 102 37 3 1 1 1 103 38 3 1 1 1 104 39 4 1 1 1 105 40 4 1 1 1 106 41 6 1 1 1 107 42 6 1 1 1 108 43 7 1 1 1 109 44 7 1 1 1 110 45 9 1 1 1 111 46 10 1 1 1 112 47 12 1 1 1 113 48 13 1 1 1 114 49 16 1 1 1 115 50 19 1 1 1 116 51 21 1 1 1 117 52 28 1 1 1 118 53 28 1 1 1 119 54 30 1 1 1 120 55 31 1 1 1 121 56 32 1 1 1 122 57 2 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 0.5 0.0662 0.0662 0.0000 0.4107 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[57] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.647100 3.025000 1.312600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 32 -0.701400 1.560200 1.216400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 3 3 -0.012700 1.085800 0.008000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 -0.753800 1.593300 -1.231200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -2.142800 1.114400 -1.198400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.393 0.400 6 3 -2.832000 1.588800 0.009700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -2.090800 1.081300 1.249000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 2 -2.828900 1.496600 -2.346000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 -2.180200 2.240800 -3.327700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -2.854800 2.615700 -4.467000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -4.196000 2.257900 -4.633100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -4.846200 1.515400 -3.642800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -4.164600 1.139200 -2.508200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -4.923500 2.662400 -5.850700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 15 -6.090100 2.350200 -5.994100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -3.000 2.000 16 25 -4.295300 3.378100 -6.804500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 -4.984600 3.761500 -7.958300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 -4.432100 4.543200 -9.070700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -3.363700 5.181400 -9.616100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 25 -3.739500 5.697800 -10.823000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 21 2 -5.053600 5.393800 -11.073400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -5.538600 4.680700 -10.035000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 25 -6.612500 4.020200 -9.464000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 24 43 -7.576931 3.979760 -9.991482 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 12.544 2.000 25 25 -6.229400 3.491400 -8.229000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -1.032 2.000 26 2 -2.937700 6.401300 -11.646800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 15 -1.790500 6.616600 -11.334800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -3.472100 6.919500 -12.957100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 2 -2.383300 7.666600 -13.683500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 2 -1.470300 7.197300 -14.568600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -0.555100 8.076200 -15.117000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 -0.597700 9.381300 -14.753400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 49 -1.966400 9.400800 -13.607300 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 34 41 0.401717 3.355559 1.285905 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -1.109379 3.347792 2.257112 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -1.192980 3.468468 0.466815 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 1.019238 1.466655 0.000729 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 0.002366 -0.014083 0.002448 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -0.744224 2.693229 -1.239293 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -0.255966 1.215637 -2.136480 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -2.847238 2.688681 0.015092 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -3.863881 1.207786 0.016691 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -2.099379 -0.018632 1.257665 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -2.587681 1.458978 2.154797 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -1.145400 2.520600 -3.196700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -2.349700 3.189200 -5.230200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -5.882200 1.237200 -3.768400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -4.666300 0.565600 -1.742800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 43 -3.240093 3.660458 -6.674841 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.515 2.000 50 41 -2.384800 5.269600 -9.168600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -5.608200 5.677700 -11.955600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -3.811769 6.074728 -13.574340 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -4.317236 7.597198 -12.766129 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -1.458400 6.152500 -14.841700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 0.182600 7.728200 -15.824900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 0.030800 10.198100 -15.076300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 44 -0.177925 1.145971 2.090693 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.928 0.300 ::: } m_bond[122] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 34 1 1 1 3 1 35 1 1 1 4 1 36 1 1 1 5 2 1 1 1 1 6 2 7 1 1 1 7 2 3 1 1 1 8 2 57 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 37 1 1 1 12 3 38 1 1 1 13 4 3 1 1 1 14 4 5 1 1 1 15 4 39 1 1 1 16 4 40 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 8 1 1 1 20 6 5 1 1 1 21 6 7 1 1 1 22 6 41 1 1 1 23 6 42 1 1 1 24 7 2 1 1 1 25 7 6 1 1 1 26 7 43 1 1 1 27 7 44 1 1 1 28 8 5 1 1 1 29 8 13 2 1 1 30 8 9 1 1 1 31 9 8 1 1 1 32 9 10 2 1 1 33 9 45 1 1 1 34 10 9 2 1 1 35 10 11 1 1 1 36 10 46 1 1 1 37 11 10 1 1 1 38 11 12 2 1 1 39 11 14 1 1 1 40 12 11 2 1 1 41 12 13 1 1 1 42 12 47 1 1 1 43 13 8 2 1 1 44 13 12 1 1 1 45 13 48 1 1 1 46 14 11 1 1 1 47 14 15 2 1 1 48 14 16 1 1 1 49 15 14 2 1 1 50 16 14 1 1 1 51 16 17 1 1 1 52 16 49 1 1 1 53 17 16 1 1 1 54 17 25 2 1 1 55 17 18 1 1 1 56 18 17 1 1 1 57 18 22 1 1 1 58 18 19 2 1 1 59 19 18 2 1 1 60 19 20 1 1 1 61 19 50 1 1 1 62 20 19 1 1 1 63 20 21 1 1 1 64 20 26 1 1 1 65 21 20 1 1 1 66 21 22 2 1 1 67 21 51 1 1 1 68 22 18 1 1 1 69 22 21 2 1 1 70 22 23 1 1 1 71 23 22 1 1 1 72 23 24 1 1 1 73 23 25 1 1 1 74 24 23 1 1 1 75 25 17 2 1 1 76 25 23 1 1 1 77 26 20 1 1 1 78 26 27 2 1 1 79 26 28 1 1 1 80 27 26 2 1 1 81 28 26 1 1 1 82 28 29 1 1 1 83 28 52 1 1 1 84 28 53 1 1 1 85 29 28 1 1 1 86 29 33 1 1 1 87 29 30 2 1 1 88 30 29 2 1 1 89 30 31 1 1 1 90 30 54 1 1 1 91 31 30 1 1 1 92 31 32 2 1 1 93 31 55 1 1 1 94 32 31 2 1 1 95 32 33 1 1 1 96 32 56 1 1 1 97 33 29 1 1 1 98 33 32 1 1 1 99 34 1 1 1 1 100 35 1 1 1 1 101 36 1 1 1 1 102 37 3 1 1 1 103 38 3 1 1 1 104 39 4 1 1 1 105 40 4 1 1 1 106 41 6 1 1 1 107 42 6 1 1 1 108 43 7 1 1 1 109 44 7 1 1 1 110 45 9 1 1 1 111 46 10 1 1 1 112 47 12 1 1 1 113 48 13 1 1 1 114 49 16 1 1 1 115 50 19 1 1 1 116 51 21 1 1 1 117 52 28 1 1 1 118 53 28 1 1 1 119 54 30 1 1 1 120 55 31 1 1 1 121 56 32 1 1 1 122 57 2 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 0.5 0.0662 0.0662 0.0000 0.4107 1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[57] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.627670 2.979075 1.297277 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 32 -0.684747 1.514698 1.196368 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 3 3 0.000723 1.043067 -0.014949 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 3 -0.741929 1.555947 -1.251001 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 25 -2.131705 1.079387 -1.217022 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 2.348 0.400 6 3 -2.817675 1.551019 -0.006004 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -2.074924 1.038139 1.230148 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 2 -2.819397 1.466570 -2.361996 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 2 -2.171326 2.212855 -3.342528 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -2.847514 2.592690 -4.479248 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 2 -4.189670 2.237799 -4.643864 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 2 -4.839221 1.493189 -3.654723 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 13 2 -4.156044 1.112057 -2.522721 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -4.918860 2.647585 -5.858682 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 15 -6.086291 2.337913 -6.000794 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 16 25 -4.291285 3.365315 -6.811367 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 17 2 -4.982186 3.753723 -7.962531 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 1 -4.430507 4.538108 -9.073448 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 2 -3.362062 5.176219 -9.618864 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 20 25 -3.740454 5.699919 -10.821982 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 21 2 -5.061709 5.418082 -11.060364 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 1 -5.546464 4.704519 -10.022168 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 25 -6.624134 4.055891 -9.444698 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 0.005 2.000 24 43 -6.843514 2.941585 -7.499758 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.511 2.000 25 25 -6.236098 3.512120 -8.217766 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 26 2 -2.937250 6.398825 -11.648321 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 15 -1.782790 6.591540 -11.348573 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -3.479135 6.940060 -12.946175 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 2 -2.387046 7.676708 -13.678292 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 30 2 -1.493175 7.201854 -14.579802 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 -0.570212 8.071244 -15.130347 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 -0.586301 9.372853 -14.752376 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 49 -1.940093 9.402775 -13.588925 900 " " X " " 13 0.00000 0.00000 "UNK " " " " " 16 0 0 1 "" 0 <> <> 34 41 0.421675 3.307874 1.269589 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 41 -1.087509 3.299569 2.243760 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 36 41 -1.174437 3.426285 0.454039 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 1.033316 1.422127 -0.023014 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 0.013835 -0.056816 -0.024148 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -0.730426 2.655878 -1.255496 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 41 -0.246553 1.180391 -2.158504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -2.830960 2.650902 0.003036 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -3.850212 1.171801 0.001781 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -2.085429 -0.061799 1.235213 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -2.569345 1.413707 2.138166 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -1.135776 2.490400 -3.212661 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -2.342912 3.167809 -5.241559 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -5.875957 1.217227 -3.779183 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -4.657242 0.536824 -1.758218 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 43 -3.235326 3.645387 -6.682874 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 14.599 2.000 50 41 -2.382125 5.261222 -9.173018 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -5.621201 5.716897 -11.934513 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -3.840641 6.107824 -13.568023 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -4.310297 7.629667 -12.737339 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -1.502270 6.160025 -14.864129 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 0.152647 7.718672 -15.851176 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 0.051789 10.182497 -15.074488 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 44 -0.160277 1.096673 2.068254 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 7.928 0.300 ::: } m_bond[122] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 34 1 1 1 3 1 35 1 1 1 4 1 36 1 1 1 5 2 1 1 1 1 6 2 7 1 1 1 7 2 3 1 1 1 8 2 57 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 37 1 1 1 12 3 38 1 1 1 13 4 3 1 1 1 14 4 5 1 1 1 15 4 39 1 1 1 16 4 40 1 1 1 17 5 4 1 1 1 18 5 6 1 1 1 19 5 8 1 1 1 20 6 5 1 1 1 21 6 7 1 1 1 22 6 41 1 1 1 23 6 42 1 1 1 24 7 2 1 1 1 25 7 6 1 1 1 26 7 43 1 1 1 27 7 44 1 1 1 28 8 5 1 1 1 29 8 13 2 1 1 30 8 9 1 1 1 31 9 8 1 1 1 32 9 10 2 1 1 33 9 45 1 1 1 34 10 9 2 1 1 35 10 11 1 1 1 36 10 46 1 1 1 37 11 10 1 1 1 38 11 12 2 1 1 39 11 14 1 1 1 40 12 11 2 1 1 41 12 13 1 1 1 42 12 47 1 1 1 43 13 8 2 1 1 44 13 12 1 1 1 45 13 48 1 1 1 46 14 11 1 1 1 47 14 15 2 1 1 48 14 16 1 1 1 49 15 14 2 1 1 50 16 14 1 1 1 51 16 17 1 1 1 52 16 49 1 1 1 53 17 16 1 1 1 54 17 18 2 1 1 55 17 25 1 1 1 56 18 17 2 1 1 57 18 19 2 1 1 58 18 22 1 1 1 59 19 18 2 1 1 60 19 20 1 1 1 61 19 50 1 1 1 62 20 19 1 1 1 63 20 21 1 1 1 64 20 26 1 1 1 65 21 20 1 1 1 66 21 22 2 1 1 67 21 51 1 1 1 68 22 18 1 1 1 69 22 21 2 1 1 70 22 23 2 1 1 71 23 22 2 1 1 72 23 25 1 1 1 73 24 25 1 1 1 74 25 17 1 1 1 75 25 23 1 1 1 76 25 24 1 1 1 77 26 20 1 1 1 78 26 27 2 1 1 79 26 28 1 1 1 80 27 26 2 1 1 81 28 26 1 1 1 82 28 29 1 1 1 83 28 52 1 1 1 84 28 53 1 1 1 85 29 28 1 1 1 86 29 33 1 1 1 87 29 30 2 1 1 88 30 29 2 1 1 89 30 31 1 1 1 90 30 54 1 1 1 91 31 30 1 1 1 92 31 32 2 1 1 93 31 55 1 1 1 94 32 31 2 1 1 95 32 33 1 1 1 96 32 56 1 1 1 97 33 29 1 1 1 98 33 32 1 1 1 99 34 1 1 1 1 100 35 1 1 1 1 101 36 1 1 1 1 102 37 3 1 1 1 103 38 3 1 1 1 104 39 4 1 1 1 105 40 4 1 1 1 106 41 6 1 1 1 107 42 6 1 1 1 108 43 7 1 1 1 109 44 7 1 1 1 110 45 9 1 1 1 111 46 10 1 1 1 112 47 12 1 1 1 113 48 13 1 1 1 114 49 16 1 1 1 115 50 19 1 1 1 116 51 21 1 1 1 117 52 28 1 1 1 118 53 28 1 1 1 119 54 30 1 1 1 120 55 31 1 1 1 121 56 32 1 1 1 122 57 2 1 1 1 ::: } }