{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 28_S_32_27_30_29 0.0295 0.0295 0.0000 0.0295 -1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[59] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 0.068100 5.910700 -0.533900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 0.365100 4.427100 -0.761100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -0.599500 3.580500 0.071800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 3 -0.302500 2.096900 -0.155300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 16 -1.203400 1.306200 0.622600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 6 2 -1.073100 -0.043700 0.534700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -0.098100 -0.596000 -0.283500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 0.032200 -1.968300 -0.371100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -0.808300 -2.791600 0.355400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -1.780300 -2.243800 1.171800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 2 -1.911000 -0.871700 1.267300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 3 -2.967000 -0.275100 2.161700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 25 -4.124000 0.120300 1.354800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" -2.498 0.720 14 2 -5.197800 0.680800 1.945700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 15 -5.206300 0.858400 3.148300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -1.720 2.000 16 2 -6.364300 1.079400 1.132100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 2 -6.358300 0.877100 -0.249700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -7.450400 1.251000 -1.003300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -8.553200 1.825900 -0.394600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 -8.569000 2.029900 0.972200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 -7.482500 1.656000 1.742300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 56 -7.500100 1.850700 3.079100 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 23 3 -9.742600 2.230800 -1.226700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 56 -10.638900 1.160000 -1.311300 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 25 56 -10.378300 3.325000 -0.630100 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 26 56 -9.314800 2.583500 -2.511100 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 27 3 -0.664200 -4.288500 0.257600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 28 3 0.206100 -4.793500 1.410200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 29 41 -0.209691 -4.452920 2.369951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 3 1.631500 -4.263100 1.243300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 31 3 2.470200 -4.663700 2.458600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 32 2 0.226500 -6.300300 1.401300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 33 15 0.224900 -6.898400 0.351500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 34 18 0.246400 -6.978100 2.559800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 5.759 1.200 35 41 0.761611 6.519349 -1.132723 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 0.195729 6.151146 0.531885 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -0.966556 6.128182 -0.837525 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 0.237471 4.186654 -1.826885 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 1.399759 4.209578 -0.457512 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -0.471898 3.821025 1.137570 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -1.634159 3.797971 -0.231822 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -0.430099 1.856390 -1.221074 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 0.732150 1.879394 0.148330 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 0.558600 0.046600 -0.851200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 0.791000 -2.398600 -1.007900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -2.435300 -2.888900 1.738500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.278354 -1.020049 2.908767 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.557711 0.608420 2.673437 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 43 -4.116354 -0.040275 0.266610 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.362 2.000 50 41 -5.499800 0.428200 -0.727000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -7.446000 1.094600 -2.071900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -9.432800 2.478200 1.440400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.657714 -4.757058 0.315755 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -0.191242 -4.549528 -0.700615 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 2.077456 -4.690357 0.333039 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 1.607289 -3.166541 1.159807 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 3.494998 -4.282387 2.338643 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 2.494386 -5.760265 2.542030 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 2.024173 -4.236447 3.368828 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[120] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 35 1 3 1 36 1 4 1 37 1 5 2 1 1 6 2 3 1 7 2 38 1 8 2 39 1 9 3 2 1 10 3 4 1 11 3 40 1 12 3 41 1 13 4 3 1 14 4 5 1 15 4 42 1 16 4 43 1 17 5 4 1 18 5 6 1 19 6 5 1 20 6 11 2 21 6 7 1 22 7 6 1 23 7 8 2 24 7 44 1 25 8 7 2 26 8 9 1 27 8 45 1 28 9 8 1 29 9 10 2 30 9 27 1 31 10 9 2 32 10 11 1 33 10 46 1 34 11 6 2 35 11 10 1 36 11 12 1 37 12 11 1 38 12 13 1 39 12 47 1 40 12 48 1 41 13 12 1 42 13 14 1 43 13 49 1 44 14 13 1 45 14 15 2 46 14 16 1 47 15 14 2 48 16 14 1 49 16 21 2 50 16 17 1 51 17 16 1 52 17 18 2 53 17 50 1 54 18 17 2 55 18 19 1 56 18 51 1 57 19 18 1 58 19 20 2 59 19 23 1 60 20 19 2 61 20 21 1 62 20 52 1 63 21 16 2 64 21 20 1 65 21 22 1 66 22 21 1 67 23 19 1 68 23 24 1 69 23 25 1 70 23 26 1 71 24 23 1 72 25 23 1 73 26 23 1 74 27 9 1 75 27 28 1 76 27 53 1 77 27 54 1 78 28 27 1 79 28 29 1 80 28 30 1 81 28 32 1 82 29 28 1 83 30 28 1 84 30 31 1 85 30 55 1 86 30 56 1 87 31 30 1 88 31 57 1 89 31 58 1 90 31 59 1 91 32 28 1 92 32 33 2 93 32 34 1 94 33 32 2 95 34 32 1 96 35 1 1 97 36 1 1 98 37 1 1 99 38 2 1 100 39 2 1 101 40 3 1 102 41 3 1 103 42 4 1 104 43 4 1 105 44 7 1 106 45 8 1 107 46 10 1 108 47 12 1 109 48 12 1 110 49 13 1 111 50 17 1 112 51 18 1 113 52 20 1 114 53 27 1 115 54 27 1 116 55 30 1 117 56 30 1 118 57 31 1 119 58 31 1 120 59 31 1 ::: } }