{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 7_R_22_6_9_8 32_S_31_39_34_33 0.0079 0.0054 0.0024 -0.0000 -2 m_depend[8] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 r_epik_Ionization_Penalty 5 10 r_epik_Ionization_Penalty_Charging 6 10 r_epik_Ionization_Penalty_Neutral 7 10 r_epik_State_Penalty 8 10 i_epik_Tot_Q ::: } m_atom[62] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 2 -8.952900 6.730500 2.378400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 2 -10.267900 7.131900 2.492100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -11.155400 6.390700 3.273900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -10.706800 5.244000 3.931300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -9.390600 4.850500 3.804500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -8.515900 5.589900 3.028400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 3 -7.079300 5.154500 2.895300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 41 -6.933358 4.237738 3.485426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 9 3 -6.763400 4.881400 1.423400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 3 -7.579800 3.680700 0.940900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -7.354800 3.480600 -0.559100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -8.158900 2.298000 -1.034400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -9.418900 2.476100 -1.587700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 25 -10.117500 1.413100 -2.003400 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 3.384 0.300 15 2 -9.631000 0.194600 -1.897600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 25 -8.402800 -0.033300 -1.357300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 17 43 -8.021883 -1.061670 -1.271522 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.384 0.700 18 2 -7.649900 1.000100 -0.925900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 15 -6.545000 0.804800 -0.444400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -0.405 1.000 20 25 -10.378300 -0.866100 -2.335200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 0.299 1.000 21 25 -9.949500 3.744500 -1.709200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 1.650 1.000 22 3 -6.160600 6.261100 3.417300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 3 -6.460500 6.518100 4.895400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 56 -6.364700 5.317000 5.606300 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 25 56 -5.537200 7.436900 5.405700 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 26 56 -7.753800 7.035300 5.025800 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 27 16 -4.797700 5.857200 3.270900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 28 16 -6.385400 7.458500 2.670500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 29 2 -12.564400 6.818700 3.405600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 30 15 -13.335000 6.171500 4.087500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -0.772 2.000 31 25 -12.994500 7.926400 2.769700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 32 3 -14.390700 8.350400 2.900200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 33 41 -14.721209 8.094387 3.917658 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 3 -14.491500 9.856800 2.652400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 35 3 -13.736400 10.606200 3.752000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 36 2 -13.835700 12.090000 3.508000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 37 15 -14.447500 12.505500 2.552600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 38 18 -13.244300 12.950000 4.352000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.997 0.650 39 2 -15.234900 7.617500 1.889500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 40 15 -14.722700 6.822600 1.137400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 41 18 -16.555700 7.847900 1.824900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 3.503 0.500 42 41 -8.264100 7.305500 1.777400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -10.608800 8.020100 1.981000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -11.388500 4.666000 4.537400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -9.042200 3.963400 4.312600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -7.021949 5.765876 0.822688 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -5.690817 4.663837 1.312805 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -7.260477 2.778474 1.483138 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -8.647839 3.863528 1.130287 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -7.674103 4.382847 -1.101314 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -6.286770 3.297743 -0.748506 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 43 -9.982661 -1.889123 -2.252171 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.827 2.000 53 43 -11.374259 -0.695157 -2.769762 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 13.827 2.000 54 43 -10.948559 3.883030 -2.148165 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.885 2.000 55 43 -9.373301 4.616818 -1.367064 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.885 2.000 56 42 -3.987638 6.527691 3.593765 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 9.458 2.000 57 42 -5.812270 8.367957 2.903761 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 9.458 2.000 58 43 -12.297198 8.512130 2.152699 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.908 2.000 59 41 -14.049499 10.097875 1.674383 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 41 -15.548849 10.159997 2.661656 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 61 41 -14.178385 10.365061 4.730009 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 62 41 -12.679038 10.303050 3.742724 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[126] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 6 2 2 1 2 1 3 1 42 1 4 2 1 1 5 2 3 2 6 2 43 1 7 3 2 2 8 3 4 1 9 3 29 1 10 4 3 1 11 4 5 2 12 4 44 1 13 5 4 2 14 5 6 1 15 5 45 1 16 6 1 2 17 6 5 1 18 6 7 1 19 7 6 1 20 7 8 1 21 7 9 1 22 7 22 1 23 8 7 1 24 9 7 1 25 9 10 1 26 9 46 1 27 9 47 1 28 10 9 1 29 10 11 1 30 10 48 1 31 10 49 1 32 11 10 1 33 11 12 1 34 11 50 1 35 11 51 1 36 12 11 1 37 12 18 1 38 12 13 2 39 13 12 2 40 13 14 1 41 13 21 1 42 14 13 1 43 14 15 2 44 15 14 2 45 15 16 1 46 15 20 1 47 16 15 1 48 16 17 1 49 16 18 1 50 17 16 1 51 18 12 1 52 18 16 1 53 18 19 2 54 19 18 2 55 20 15 1 56 20 52 1 57 20 53 1 58 21 13 1 59 21 54 1 60 21 55 1 61 22 7 1 62 22 23 1 63 22 27 1 64 22 28 1 65 23 22 1 66 23 24 1 67 23 25 1 68 23 26 1 69 24 23 1 70 25 23 1 71 26 23 1 72 27 22 1 73 27 56 1 74 28 22 1 75 28 57 1 76 29 3 1 77 29 30 2 78 29 31 1 79 30 29 2 80 31 29 1 81 31 32 1 82 31 58 1 83 32 31 1 84 32 33 1 85 32 34 1 86 32 39 1 87 33 32 1 88 34 32 1 89 34 35 1 90 34 59 1 91 34 60 1 92 35 34 1 93 35 36 1 94 35 61 1 95 35 62 1 96 36 35 1 97 36 37 2 98 36 38 1 99 37 36 2 100 38 36 1 101 39 32 1 102 39 40 2 103 39 41 1 104 40 39 2 105 41 39 1 106 42 1 1 107 43 2 1 108 44 4 1 109 45 5 1 110 46 9 1 111 47 9 1 112 48 10 1 113 49 10 1 114 50 11 1 115 51 11 1 116 52 20 1 117 53 20 1 118 54 21 1 119 55 21 1 120 56 27 1 121 57 28 1 122 58 31 1 123 59 34 1 124 60 34 1 125 61 35 1 126 62 35 1 ::: } }