{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0016 0.0000 0.0016 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[42] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.012700 1.085800 0.008000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 2 -0.718100 1.571800 1.247900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -2.088800 1.792300 1.233100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -2.707000 2.259800 2.474400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 2 -4.080900 2.506100 2.558700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -4.616000 2.947700 3.735100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -3.807600 3.156300 4.853600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 2 -2.468000 2.925200 4.804300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -1.881200 2.469800 3.608200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 25 -0.570800 2.236800 3.530900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 4.432 0.900 11 2 0.005200 1.811100 2.426000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 1.468600 1.577200 2.426700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 2.007900 0.528800 1.680700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 3.368500 0.314900 1.677400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 4.205900 1.139000 2.428800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 3.666500 2.183800 3.178800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 2 2.306600 2.401700 3.177900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 5.670300 0.904600 2.429900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 6.510400 1.730400 3.175000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 2 7.871900 1.504800 3.175700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 2 8.404200 0.467500 2.431300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 7.575800 -0.352000 1.685800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 6.212300 -0.138900 1.681300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 56 -5.943400 3.185700 3.817000 900 " " X " " 8 0.00000 0.00000 "UNK " " " " " 9 0 "" <> <> 25 2 -2.891600 1.559700 0.014800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 26 15 -3.385000 0.468500 -0.188300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 27 18 -3.076500 2.557900 -0.870900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 2.906 0.400 28 41 -0.744057 0.958132 -0.803676 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 0.474682 0.122148 0.217364 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 0.746125 1.822405 -0.294652 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -4.715100 2.347700 1.699000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -4.252800 3.506600 5.773100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -1.856800 3.091100 5.679100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 1.359000 -0.112100 1.102300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 3.786400 -0.494100 1.096700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 4.315300 2.822300 3.760000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 1.889000 3.211000 3.758400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 6.096300 2.542900 3.753600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 8.523400 2.141700 3.755600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 9.470600 0.297000 2.431800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 7.996900 -1.159900 1.105900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 5.566500 -0.779100 1.098700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[90] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 28 1 3 1 29 1 4 1 30 1 5 2 1 1 6 2 11 2 7 2 3 1 8 3 2 1 9 3 4 2 10 3 25 1 11 4 3 2 12 4 9 1 13 4 5 1 14 5 4 1 15 5 6 2 16 5 31 1 17 6 5 2 18 6 7 1 19 6 24 1 20 7 6 1 21 7 8 2 22 7 32 1 23 8 7 2 24 8 9 1 25 8 33 1 26 9 4 1 27 9 8 1 28 9 10 2 29 10 9 2 30 10 11 1 31 11 2 2 32 11 10 1 33 11 12 1 34 12 11 1 35 12 17 2 36 12 13 1 37 13 12 1 38 13 14 2 39 13 34 1 40 14 13 2 41 14 15 1 42 14 35 1 43 15 14 1 44 15 16 2 45 15 18 1 46 16 15 2 47 16 17 1 48 16 36 1 49 17 12 2 50 17 16 1 51 17 37 1 52 18 15 1 53 18 23 2 54 18 19 1 55 19 18 1 56 19 20 2 57 19 38 1 58 20 19 2 59 20 21 1 60 20 39 1 61 21 20 1 62 21 22 2 63 21 40 1 64 22 21 2 65 22 23 1 66 22 41 1 67 23 18 2 68 23 22 1 69 23 42 1 70 24 6 1 71 25 3 1 72 25 26 2 73 25 27 1 74 26 25 2 75 27 25 1 76 28 1 1 77 29 1 1 78 30 1 1 79 31 5 1 80 32 7 1 81 33 8 1 82 34 13 1 83 35 14 1 84 36 16 1 85 37 17 1 86 38 19 1 87 39 20 1 88 40 21 1 89 41 22 1 90 42 23 1 ::: } }