{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 2_R_19_4_1_3 0.0032 0.0006 0.0025 -0.0000 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[40] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 0.068300 1.215400 -0.251800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 0.085400 -0.303200 -0.065700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 41 0.657998 -0.784710 -0.872099 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 4 3 -1.350800 -0.829900 -0.038500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 3 -2.109500 -0.182400 1.121700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 3 -3.545800 -0.709100 1.148900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -3.528600 -2.227600 1.335000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 3 -2.769900 -2.875100 0.174800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 3 -1.333700 -2.348400 0.147600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -4.943300 -2.746400 1.361800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 15 -5.308600 -3.554400 0.534500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.439 2.000 12 25 -5.802400 -2.312400 2.305200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 13 2 -7.140300 -2.707100 2.265200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -7.782800 -2.933700 1.049100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 -9.105100 -3.326900 1.052700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 25 -9.762500 -3.479300 2.186700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 4.675 1.200 17 2 -9.190800 -3.270100 3.357600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 -7.870400 -2.879400 3.440100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 32 0.752300 -0.633800 1.200700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 20 44 0.764598 -1.725563 1.334501 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 21 44 0.206792 -0.168268 2.034787 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 22 41 1.100893 1.594042 -0.271351 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 23 41 -0.477222 1.680885 0.582304 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 24 41 -0.431064 1.462971 -1.200138 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 25 41 -1.850171 -0.582371 -0.986845 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 -1.610091 -0.430033 2.069998 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 -2.121750 0.909370 0.987951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 -4.091297 -0.243573 1.982997 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 -4.045185 -0.461495 0.200582 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 -3.042249 -2.482046 2.288268 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 -2.757634 -3.966862 0.308613 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 -3.269304 -2.627531 -0.773517 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 -0.788175 -2.813891 -0.686499 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 -0.834322 -2.596010 1.095920 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 43 -5.448965 -1.647060 3.106702 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.369 2.000 36 41 -7.252000 -2.806400 0.117300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -9.609900 -3.508300 0.115300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -9.764200 -3.406000 4.262700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -7.408800 -2.709200 4.401600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 44 1.784877 -0.255118 1.181078 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 ::: } m_bond[82] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 22 1 1 1 3 1 23 1 1 1 4 1 24 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 19 1 1 1 9 3 2 1 1 1 10 4 2 1 1 1 11 4 9 1 1 1 12 4 5 1 1 1 13 4 25 1 1 1 14 5 4 1 1 1 15 5 6 1 1 1 16 5 26 1 1 1 17 5 27 1 1 1 18 6 5 1 1 1 19 6 7 1 1 1 20 6 28 1 1 1 21 6 29 1 1 1 22 7 6 1 1 1 23 7 8 1 1 1 24 7 10 1 1 1 25 7 30 1 1 1 26 8 7 1 1 1 27 8 9 1 1 1 28 8 31 1 1 1 29 8 32 1 1 1 30 9 4 1 1 1 31 9 8 1 1 1 32 9 33 1 1 1 33 9 34 1 1 1 34 10 7 1 1 1 35 10 11 2 1 1 36 10 12 1 1 1 37 11 10 2 1 1 38 12 10 1 1 1 39 12 13 1 1 1 40 12 35 1 1 1 41 13 12 1 1 1 42 13 18 2 1 1 43 13 14 1 1 1 44 14 13 1 1 1 45 14 15 2 1 1 46 14 36 1 1 1 47 15 14 2 1 1 48 15 16 1 1 1 49 15 37 1 1 1 50 16 15 1 1 1 51 16 17 2 1 1 52 17 16 2 1 1 53 17 18 1 1 1 54 17 38 1 1 1 55 18 13 2 1 1 56 18 17 1 1 1 57 18 39 1 1 1 58 19 2 1 1 1 59 19 20 1 1 1 60 19 21 1 1 1 61 19 40 1 1 1 62 20 19 1 1 1 63 21 19 1 1 1 64 22 1 1 1 1 65 23 1 1 1 1 66 24 1 1 1 1 67 25 4 1 1 1 68 26 5 1 1 1 69 27 5 1 1 1 70 28 6 1 1 1 71 29 6 1 1 1 72 30 7 1 1 1 73 31 8 1 1 1 74 32 8 1 1 1 75 33 9 1 1 1 76 34 9 1 1 1 77 35 12 1 1 1 78 36 14 1 1 1 79 37 15 1 1 1 80 38 17 1 1 1 81 39 18 1 1 1 82 40 19 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 2_R_19_4_1_3 0.0032 0.0006 0.0025 -0.0000 1 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[40] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -0.287100 2.061900 0.392300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -0.098100 0.546100 0.305100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 41 0.523132 0.283728 -0.563940 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 4 3 -1.465500 -0.133900 0.212500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 5 3 -2.289600 0.206600 1.455900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 3 -3.657000 -0.473400 1.363300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 7 3 -3.468000 -1.989200 1.276100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 3 -2.643900 -2.329700 0.032800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 9 3 -1.276500 -1.649700 0.125300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 2 -2.746600 -2.477100 2.506000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 15 -1.678500 -3.041500 2.398600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -1.439 2.000 12 25 -3.288300 -2.286100 3.725200 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 13 2 -2.676500 -2.832800 4.853900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 2 -1.990800 -4.044200 4.779500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 15 2 -1.396100 -4.548900 5.917300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 25 -1.478700 -3.904900 7.066300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 4.675 1.200 17 2 -2.122500 -2.758400 7.178300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 2 -2.740200 -2.184600 6.086400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 19 32 0.605200 0.070600 1.503900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 20 44 0.741077 -1.019174 1.441202 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 21 44 0.012796 0.315436 2.397831 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 22 41 0.696059 2.550742 0.458874 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 23 41 -0.879607 2.306685 1.286177 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 24 41 -0.813624 2.417981 -0.505463 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 25 41 -1.991969 0.222184 -0.685294 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 26 41 -1.763005 -0.149506 2.353611 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 27 41 -2.425486 1.296370 1.518639 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 28 41 -4.249500 -0.228602 2.257178 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 29 41 -4.183565 -0.117314 0.465563 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 30 41 -4.448055 -2.485838 1.222780 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 31 41 -2.507976 -3.419471 -0.029841 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 32 41 -3.170463 -1.973686 -0.864967 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 33 41 -0.684053 -1.894490 -0.768615 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 34 41 -0.749891 -2.005811 1.023001 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 35 43 -4.212699 -1.699250 3.830527 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 11.369 2.000 36 41 -1.923400 -4.578600 3.843400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 37 41 -0.859600 -5.484900 5.868200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 38 41 -2.166600 -2.263200 8.137100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 39 41 -3.266000 -1.246500 6.185100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 40 44 1.588346 0.559491 1.570307 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.015 0.700 ::: } m_bond[82] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 22 1 1 1 3 1 23 1 1 1 4 1 24 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 4 1 1 1 8 2 19 1 1 1 9 3 2 1 1 1 10 4 2 1 1 1 11 4 9 1 1 1 12 4 5 1 1 1 13 4 25 1 1 1 14 5 4 1 1 1 15 5 6 1 1 1 16 5 26 1 1 1 17 5 27 1 1 1 18 6 5 1 1 1 19 6 7 1 1 1 20 6 28 1 1 1 21 6 29 1 1 1 22 7 6 1 1 1 23 7 8 1 1 1 24 7 10 1 1 1 25 7 30 1 1 1 26 8 7 1 1 1 27 8 9 1 1 1 28 8 31 1 1 1 29 8 32 1 1 1 30 9 4 1 1 1 31 9 8 1 1 1 32 9 33 1 1 1 33 9 34 1 1 1 34 10 7 1 1 1 35 10 11 2 1 1 36 10 12 1 1 1 37 11 10 2 1 1 38 12 10 1 1 1 39 12 13 1 1 1 40 12 35 1 1 1 41 13 12 1 1 1 42 13 18 2 1 1 43 13 14 1 1 1 44 14 13 1 1 1 45 14 15 2 1 1 46 14 36 1 1 1 47 15 14 2 1 1 48 15 16 1 1 1 49 15 37 1 1 1 50 16 15 1 1 1 51 16 17 2 1 1 52 17 16 2 1 1 53 17 18 1 1 1 54 17 38 1 1 1 55 18 13 2 1 1 56 18 17 1 1 1 57 18 39 1 1 1 58 19 2 1 1 1 59 19 20 1 1 1 60 19 21 1 1 1 61 19 40 1 1 1 62 20 19 1 1 1 63 21 19 1 1 1 64 22 1 1 1 1 65 23 1 1 1 1 66 24 1 1 1 1 67 25 4 1 1 1 68 26 5 1 1 1 69 27 5 1 1 1 70 28 6 1 1 1 71 29 6 1 1 1 72 30 7 1 1 1 73 31 8 1 1 1 74 32 8 1 1 1 75 33 9 1 1 1 76 34 9 1 1 1 77 35 12 1 1 1 78 36 14 1 1 1 79 37 15 1 1 1 80 38 17 1 1 1 81 39 18 1 1 1 82 40 19 1 1 1 ::: } }