{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 1.173700 1.351200 0.433600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 1.427000 0.555200 1.715400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 0.679300 1.192200 2.858400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -0.113300 0.466700 3.607800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -0.155800 -1.029300 3.431800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 0.087000 -1.698500 4.760000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -0.749000 -2.606800 5.198400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -1.861600 -3.098800 4.308900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -1.811700 -4.602800 4.227400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -2.870300 -5.310900 4.533900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -2.820400 -6.814800 4.452300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -3.226700 -7.403600 5.778700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -4.179100 -8.301500 5.832600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -4.749600 -8.872100 4.559800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -4.691100 -10.377000 4.613600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -5.774700 -11.082500 4.403300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -7.040800 -10.402100 3.950600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -7.568600 -11.091200 2.718700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -8.786700 -11.573200 2.708900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -9.596400 -11.600700 3.979600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -10.864700 -10.765300 3.794300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -11.674400 -10.792800 5.065000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -11.277700 -11.416500 6.020700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 -12.836300 -10.124300 5.135000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 1.719459 0.886221 -0.400631 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 1.523016 2.385412 0.569189 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 0.096521 1.354234 0.210720 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 1.077684 -0.479012 1.579811 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 2.504174 0.552117 1.938304 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 0.799062 2.266268 3.063425 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -0.747845 0.949540 4.365572 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -1.142907 -1.325319 3.047101 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 0.623016 -1.336868 2.718464 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 0.966262 -1.424259 5.361406 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -0.638877 -3.010360 6.215755 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -2.830139 -2.786105 4.726218 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -1.741562 -2.672804 3.301866 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -0.886281 -5.105975 3.910516 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -3.795697 -4.807728 4.850853 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -3.510828 -7.162636 3.669792 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -1.797000 -7.134966 4.207051 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -2.723557 -7.079431 6.701609 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -4.562368 -8.638934 6.806892 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.795452 -8.549456 4.449823 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -4.162862 -8.512743 3.701546 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -3.738577 -10.883075 4.829443 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -5.760407 -12.171592 4.557164 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -7.792740 -10.456321 4.751628 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -6.827839 -9.348197 3.718360 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -6.931036 -11.189471 1.827715 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -9.218478 -11.957846 1.773157 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -9.872450 -12.638912 4.216056 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -8.999496 -11.183217 4.803865 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -10.588605 -9.727105 3.557820 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -11.461604 -11.182784 2.970035 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -17.885100 4.394800 6.854200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -17.484800 5.324000 5.706600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.175000 6.693500 6.253800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -16.038600 7.274900 5.959300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -15.113800 6.651600 4.945700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.777000 7.665500 3.882800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -13.524900 7.918700 3.592400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -12.427600 7.076400 4.190200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -11.542500 6.549900 3.090000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -10.251500 6.769400 3.126400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -9.366400 6.242900 2.026100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -8.571700 7.378300 1.434200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -7.266700 7.293600 1.356300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.573400 6.001700 1.704200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.660500 5.601300 0.574000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -4.391300 5.374700 0.806000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -3.478400 4.974300 -0.324200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -2.309800 5.923800 -0.386500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -1.085600 5.457800 -0.369800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.843400 3.972800 -0.454300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.150000 3.681400 -1.580800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 0.392200 2.196400 -1.665300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -0.171900 1.447900 -0.902700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 1.234600 1.705200 -2.587700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -18.111224 3.395160 6.454716 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -18.775436 4.798009 7.358901 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -17.056435 4.323181 7.574051 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -16.594464 4.920791 5.201899 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.313429 5.395627 4.986709 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -17.903107 7.204971 6.900529 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.759436 8.218014 6.451848 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -14.190320 6.323241 5.445064 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.608125 5.785008 4.482385 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -15.582489 8.192941 3.350829 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -13.274533 8.746134 2.912202 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.829396 7.689523 4.880296 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -12.870881 6.232773 4.739559 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -11.980429 5.981300 2.256386 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.813566 7.337969 3.960033 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -8.678750 5.489387 2.437628 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -9.988127 5.783394 1.243598 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -9.087316 8.278148 1.067574 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -6.677037 8.165551 1.036927 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.982582 6.138253 2.621962 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.324457 5.214345 1.865401 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -6.059963 5.499319 -0.445818 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.991837 5.476681 1.825818 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -3.111128 3.951478 -0.154065 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -4.032310 5.011755 -1.273822 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -2.484765 7.008165 -0.445997 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -0.234423 6.150451 -0.294097 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.431117 3.613656 0.500183 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.793118 3.457517 -0.660503 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -0.262307 4.040579 -2.535260 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 1.099721 4.196678 -1.374600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000003 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -3.520300 2.252700 -1.642000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -2.777800 1.635400 -0.455200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -3.321200 2.206300 0.829200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -3.720200 1.404500 1.785200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -3.485800 -0.079800 1.670700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -2.769100 -0.571600 2.901800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -3.250200 -1.584500 3.579000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -4.423700 -2.361600 3.040600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -4.076400 -3.827300 2.992900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -4.842400 -4.701900 3.596500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -4.495000 -6.167600 3.548900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -4.407300 -6.708900 4.952600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -5.127600 -7.746200 5.300700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -5.039900 -8.287600 6.704400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -6.418300 -8.335100 7.311600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -6.867000 -9.450700 7.831500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -5.947300 -10.634900 7.982500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -5.979400 -11.117000 9.410000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -6.242700 -12.373400 9.671300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -6.350900 -13.370300 8.546300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -5.436900 -14.563400 8.832500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -5.545100 -15.560400 7.707600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -6.278100 -15.339200 6.772900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 -4.827200 -16.694000 7.744000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -3.123662 1.835986 -2.579565 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -3.377984 3.343440 -1.636369 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -4.593050 2.022461 -1.563277 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -2.920116 0.544660 -0.460831 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -1.705038 1.865593 -0.533898 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -3.382817 3.296269 0.964000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -4.226343 1.814609 2.671557 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -4.451904 -0.597439 1.577469 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -2.871770 -0.286568 0.781760 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -1.842003 -0.080044 3.231746 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -2.797580 -1.867822 4.540698 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -5.294242 -2.212222 3.696225 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -4.663336 -2.008397 2.026784 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -3.179685 -4.162712 2.451234 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -5.739169 -4.366499 4.138082 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -5.274014 -6.711220 2.994270 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -3.526461 -6.298682 3.044172 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -3.738484 -6.233017 5.684871 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.796449 -8.222056 4.568442 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -4.614728 -9.301823 6.680293 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -4.394855 -7.633930 7.309901 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -7.047702 -7.432987 7.318266 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -7.915005 -9.522989 8.157782 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -6.278482 -11.443841 7.314717 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -4.921412 -10.338446 7.718551 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -5.781736 -10.413886 10.232533 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -6.384802 -12.700689 10.711824 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -7.391398 -13.717241 8.462658 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -6.046548 -12.893195 7.603039 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -4.396410 -14.216423 8.916092 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -5.741208 -15.040467 9.775794 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000004 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 5.445100 5.200900 -1.188500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 4.672200 3.892400 -1.010800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 4.189500 3.783400 0.412600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 2.918700 3.583700 0.659800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 1.960900 3.330500 -0.475800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 1.136800 2.105300 -0.174200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -0.171100 2.170500 -0.210400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -0.849700 3.418400 -0.713400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -1.820900 3.056000 -1.807200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -3.077200 3.415100 -1.713200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -4.048400 3.052700 -2.807100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -5.215600 2.305400 -2.215200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.437400 2.732300 -2.417900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -7.604600 1.985100 -1.826100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -8.438000 2.929300 -0.998500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -9.718500 3.058500 -1.242700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -10.551900 4.002800 -0.415100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -11.259600 4.975500 -1.322900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -12.557700 5.128100 -1.234700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -13.319700 4.467600 -0.114800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -14.162900 5.514800 0.615500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -14.924900 4.854300 1.735300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -14.805800 3.667700 1.929400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 -15.736000 5.584200 2.517100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 5.797422 5.280419 -2.227512 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 6.308258 5.212372 -0.506718 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 4.785239 6.050559 -0.959014 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 3.809042 3.880928 -1.692582 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 5.332018 3.042712 -1.240302 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 4.904318 3.871535 1.244025 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 2.550691 3.600822 1.696273 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 1.296483 4.198945 -0.595603 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 2.527699 3.171546 -1.405032 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 1.633452 1.156314 0.076325 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -0.773998 1.314294 0.126388 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -1.391989 3.899682 0.113818 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -0.093865 4.112614 -1.109354 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -1.474855 2.489903 -2.684575 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -3.423252 3.981168 -0.835809 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -4.409687 3.969835 -3.295296 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -3.544019 2.416547 -3.549333 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -5.041632 1.401489 -1.612970 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -6.611367 3.636221 -3.020114 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -8.220231 1.566111 -2.635696 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.232658 1.169437 -1.188642 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -7.971063 3.510017 -0.189341 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -10.185447 2.477744 -2.051824 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -11.294985 3.429399 0.158517 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -9.900563 4.555424 0.277985 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -10.686206 5.557347 -2.059564 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -13.091517 5.738358 -1.978087 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -13.978528 3.689858 -0.528398 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -12.610890 4.010279 0.591207 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -13.504065 6.292518 1.029133 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -14.871711 5.972160 -0.090480 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000005 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -2.554600 3.334800 3.344600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -1.448400 4.242000 2.802100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -0.110700 3.577200 3.001600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 0.710200 3.440800 1.989900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 0.391800 4.090800 0.668100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 1.559000 4.937700 0.230600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 2.104700 4.744100 -0.944500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 3.267900 5.595200 -1.384500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 4.421000 4.706800 -1.774800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 4.965000 4.823000 -2.960800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 6.118100 3.934700 -3.351200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 5.785200 3.213000 -4.631600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 6.615800 3.257600 -5.643600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 7.973900 3.888900 -5.476500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 9.037600 2.916100 -5.916300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 9.940800 3.284500 -6.790700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 10.018800 4.722900 -7.233100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 11.423100 5.233300 -7.037300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 12.062300 5.791500 -8.035300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 11.338700 6.083400 -9.324500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 11.530500 7.555400 -9.695100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 10.806900 7.847300 -10.984400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 10.200100 6.968200 -11.548900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 10.836600 9.083900 -11.505500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -3.531022 3.819985 3.199014 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -2.389784 3.157097 4.417567 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -2.538236 2.375136 2.807221 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -1.613216 4.419703 1.729133 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -1.464745 5.201689 3.339435 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 0.176387 3.206509 3.996673 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 1.632025 2.851768 2.105139 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 0.199883 3.313318 -0.086015 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -0.500716 4.724541 0.776672 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 1.952762 5.718446 0.897973 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 1.713857 3.960307 -1.610015 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 2.968274 6.207622 -2.247729 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 3.574879 6.252428 -0.557569 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 4.805847 3.960828 -1.063872 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 4.580138 5.568956 -3.671737 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 7.019326 4.547727 -3.499489 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 6.301574 3.200088 -2.553276 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 4.844748 2.648767 -4.716401 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 6.321926 2.834225 -6.615398 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 8.033073 4.799422 -6.090868 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 8.129658 4.149262 -4.419168 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 9.055623 1.896795 -5.503149 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 10.642367 2.543836 -7.202065 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 9.747599 4.794581 -8.296731 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 9.321836 5.328686 -6.635384 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 11.911446 5.137148 -6.056345 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 13.127209 6.047127 -7.932227 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 11.745057 5.447804 -10.125057 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 10.266227 5.873736 -9.198634 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 11.124110 8.190994 -8.894558 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 12.602965 7.765109 -9.820964 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000006 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -18.980100 9.651000 2.411800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -18.043700 8.824700 3.295600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.464600 7.689900 2.490700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -16.167000 7.516600 2.442200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -15.263700 8.337300 3.326100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.358300 7.420800 4.108100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -13.059100 7.579000 4.051600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -12.153700 6.662600 4.833600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -11.152400 6.030500 3.901500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.870100 6.138700 4.146700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.868700 5.506600 3.214600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -7.889600 6.551800 2.745500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.602300 6.352500 2.884200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.093700 5.016300 3.360600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.049400 4.505300 2.401700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -3.860300 4.176900 2.842400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -2.816000 3.665900 1.883500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.572100 4.508700 1.999700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -0.413700 3.939300 2.223700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.296000 2.437100 2.203500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.835900 2.026800 1.259300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 0.953500 0.524600 1.239100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 0.208500 -0.148900 1.910900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 1.886000 -0.065400 0.474800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -19.402780 10.479316 2.999366 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -19.794575 9.010975 2.041668 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -18.416159 10.056768 1.558968 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.229225 9.464725 3.665732 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.607596 8.418933 4.148462 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -18.131496 7.007076 1.943890 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.736819 6.772001 1.756258 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -14.655443 9.010674 2.704336 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.873440 8.931934 4.022252 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -14.788363 6.619018 4.726317 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -12.629036 8.380754 3.433348 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.623083 7.241324 5.604005 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -12.754342 5.876413 5.314369 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -11.498219 5.478261 3.015249 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.524281 6.690937 5.032952 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -8.327564 4.708707 3.744259 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -9.393559 5.080187 2.347020 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -8.255842 7.482027 2.286648 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.892592 7.160478 2.652929 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.649646 5.128387 4.360726 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -6.928747 4.301853 3.408171 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -5.285625 4.408074 1.331773 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.624075 4.274126 3.912327 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.574813 2.620645 2.126955 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -3.202927 3.723003 0.855382 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -1.636778 5.601931 1.896442 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 0.473081 4.557747 2.426536 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.077320 2.072789 3.218121 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.242529 1.999805 1.852992 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 0.617235 2.391163 0.244694 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 1.782456 2.464026 1.609820 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000007 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -14.163200 5.513500 0.615800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -13.320000 4.466300 -0.114400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -12.558100 5.126900 -1.234300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -11.260000 4.974300 -1.322600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -10.552200 4.001700 -0.414800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -9.718700 3.057500 -1.242400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -8.438100 2.928500 -0.998200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -7.604700 1.984300 -1.825800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -6.437600 2.731600 -2.417700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -5.215700 2.304900 -2.215100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -4.048600 3.052200 -2.807000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -3.077400 3.414800 -1.713200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -1.821100 3.055700 -1.807200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -0.849900 3.418300 -0.713400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -0.171100 2.170400 -0.210400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 1.136800 2.105400 -0.174300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 1.960700 3.330700 -0.475900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 2.918500 3.584000 0.659600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 4.189400 3.783800 0.412400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 4.672000 3.892800 -1.011100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 5.444700 5.201400 -1.188800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 5.927300 5.310400 -2.612300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 5.678800 4.431600 -3.403400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 6.633300 6.383700 -3.001300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -14.719352 5.031358 1.433256 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -14.872057 5.970710 -0.090231 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -13.504389 6.291290 1.029334 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -12.611143 4.009090 0.591631 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -13.978771 3.688474 -0.527929 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -13.091963 5.737224 -1.977600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -10.686674 5.556088 -2.059363 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -9.900916 4.554438 0.278244 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -11.295215 3.428251 0.158859 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -10.185568 2.476646 -2.051500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -7.971229 3.509365 -0.189109 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -7.232645 1.168730 -1.188288 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -8.220358 1.565181 -2.635309 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -6.611770 3.635471 -3.019930 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -5.041530 1.401029 -1.612870 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -3.544192 2.415971 -3.549149 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -4.409970 3.969233 -3.295327 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -3.423419 3.981004 -0.835884 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -1.475081 2.489496 -2.684516 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.094169 4.112586 -1.109427 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -1.392219 3.899565 0.113809 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -0.773841 1.314105 0.126440 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 1.633616 1.156480 0.076148 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 2.527479 3.171809 -1.405155 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 1.296162 4.199055 -0.595685 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 2.550468 3.601126 1.696065 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 4.904196 3.871993 1.243838 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 5.331934 3.043197 -1.240581 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 3.808810 3.881155 -1.692839 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 4.784728 6.050961 -0.959271 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 6.307880 5.213033 -0.507048 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000008 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -19.342400 7.815200 1.397300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -17.959400 8.240600 0.900100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.198700 8.891100 2.026800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -16.006200 8.455300 2.349300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -15.324000 7.421400 1.491000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -13.945900 7.905900 1.120600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -12.898300 7.165200 1.384900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -11.520200 7.649700 1.014600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -10.638900 7.639900 2.237000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.503800 6.986200 2.220900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.622500 6.976500 3.443400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -8.332600 5.552500 3.842300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -7.093400 5.147700 3.971200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.803500 3.723700 4.370100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.892100 3.091800 3.349700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -4.762300 2.547600 3.728400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -3.851000 1.915700 2.708000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -2.479200 2.531200 2.810100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -1.427600 1.765500 2.965000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -1.565600 0.267800 2.871300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -0.546500 -0.276500 1.868200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -0.684500 -1.774200 1.774400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -1.513000 -2.347500 2.441400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 0.112900 -2.471400 0.949900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -19.897620 7.340407 0.574924 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -19.893563 8.699716 1.749222 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -19.230278 7.099650 2.225199 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.408237 7.356084 0.548178 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.071475 8.956133 0.072180 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -17.644796 9.731809 2.578350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.502663 8.844026 3.246709 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -15.242903 6.477060 2.049252 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.913040 7.257346 0.576605 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -13.819668 8.881468 0.628327 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -13.024538 6.189604 1.877115 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.091969 6.986560 0.248530 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -11.585756 8.673641 0.618056 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -10.948781 8.181674 3.142790 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.193936 6.444397 1.315122 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -7.678130 7.493874 3.218703 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -9.135232 7.491497 4.269163 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -9.161564 4.852963 4.025239 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -6.264436 5.847237 3.788261 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -6.315080 3.711204 5.355640 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.745540 3.158002 4.420563 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -6.175600 3.087554 2.286869 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -4.478784 2.551875 4.791227 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -3.782684 0.834255 2.897235 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -4.255438 2.086602 1.699426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -2.360907 3.623410 2.754558 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -0.443808 2.215791 3.163472 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -1.382660 -0.179782 3.859330 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -2.581933 0.013463 2.536070 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -0.729423 0.171160 0.880202 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 0.469839 -0.022216 2.203454 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000009 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 0.782600 -0.516000 -5.645400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 0.857500 0.054700 -4.227800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -0.453000 -0.180500 -3.521700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -0.474000 -0.806100 -2.371000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -1.784400 -1.041300 -1.665000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -1.943600 -2.512200 -1.378200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -2.218400 -2.916600 -0.162900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -2.537100 -1.909900 0.912200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -3.854000 -2.261400 1.555100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -3.926400 -2.425000 2.852800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -5.243300 -2.776600 3.495600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -5.084200 -4.033200 4.312000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -5.464300 -4.052500 5.565500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.208800 -2.877500 6.145300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -7.491800 -3.356400 6.774200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -7.769600 -3.043400 8.015500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -6.898500 -2.063300 8.758400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -7.755300 -0.964400 9.332300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -7.688300 -0.680700 10.609400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -6.641300 -1.336100 11.472800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -5.865200 -0.261800 12.237300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -4.818300 -0.917100 13.100700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -4.704500 -2.120000 13.104300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 -4.012100 -0.164500 13.865900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 1.739118 -0.344327 -6.160766 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -0.026813 -0.017615 -6.198990 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 0.581649 -1.596341 -5.595572 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 1.666913 -0.443685 -3.674210 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 1.058477 1.135038 -4.277580 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -1.391905 0.173194 -3.972651 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 0.464908 -1.159770 -1.920036 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -1.797242 -0.479818 -0.719181 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -2.611895 -0.700809 -2.304779 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -1.829042 -3.246252 -2.189399 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -2.216518 -3.991041 0.072839 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -1.742779 -1.922156 1.673057 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -2.602794 -0.906220 0.466879 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -4.754454 -2.380589 0.934635 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -3.025963 -2.305734 3.473274 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -5.563567 -1.952374 4.149878 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -6.000464 -2.940170 2.714608 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -4.648875 -4.934284 3.855338 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.240039 -4.926364 6.194840 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.585791 -2.389510 6.909319 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -6.438704 -2.158193 5.345462 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -8.195065 -3.968849 6.190826 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -8.638618 -3.495915 8.515537 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -6.374409 -2.583371 9.573786 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -6.161386 -1.630021 8.066350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -8.437022 -0.400488 8.678650 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -8.396195 0.035836 11.051509 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -7.128429 -2.015310 12.187907 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -5.947984 -1.907641 10.838251 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -5.378076 0.417376 11.522156 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 -6.558524 0.309769 12.871816 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000010 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -19.455800 7.783200 6.153300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -18.228900 7.466200 7.010700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.204300 6.744300 6.174100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -15.983900 7.212200 6.085200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -14.959200 6.490300 5.248600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.371100 7.444200 4.241000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -13.071900 7.590000 4.157700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -12.159900 6.681400 4.941200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -11.152300 6.057200 4.010600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.871200 6.176100 4.257400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.863500 5.551800 3.326800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -7.892500 6.604800 2.858500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.603700 6.416200 2.998800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.084700 5.084500 3.476500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.035100 4.581800 2.519100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -3.843800 4.263400 2.961400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -2.794100 3.760600 2.004100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.557400 4.613700 2.121400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -0.394600 4.054000 2.347100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.264500 2.552800 2.327700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.871900 2.151500 1.385200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 1.002000 0.650200 1.365800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 0.261700 -0.029000 2.037000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 1.940200 0.067600 0.602900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -20.203676 8.310155 6.764038 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -19.888201 6.846583 5.771492 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -19.157554 8.420757 5.307977 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.796499 8.402817 7.392508 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.527106 6.828664 7.856053 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -17.481090 5.824485 5.638070 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.707115 8.132025 6.621214 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -14.160019 6.105425 5.899124 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.439696 5.651969 4.722933 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -15.032745 8.018048 3.575475 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -12.646642 8.375625 3.515868 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.635009 7.264798 5.712002 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -12.754620 5.890484 5.421574 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -11.492409 5.501764 3.124137 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.531089 6.731587 5.143831 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -8.316501 4.758598 3.857481 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -9.383784 5.120721 2.458770 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -8.265882 7.531794 2.398861 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.900419 7.229888 2.767914 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.642823 5.200745 4.477116 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -6.913886 4.363217 3.523405 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -5.269210 4.482205 1.448925 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.609673 4.363049 4.031566 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.544560 2.717505 2.248402 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -3.180184 3.813968 0.975465 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -1.630986 5.706309 2.017524 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 0.486777 4.679853 2.550770 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.044145 2.190730 3.342761 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.206938 2.107574 1.976154 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 0.651532 2.513595 0.370151 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 1.814351 2.596704 1.736738 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000011 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -15.307800 1.328400 -0.974000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -14.181200 0.308000 -1.148400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -12.996700 0.973800 -1.800100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -11.820600 0.926800 -1.225100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -10.636100 1.592700 -1.876800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -10.006000 2.558300 -0.906500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -8.724200 2.483200 -0.646800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -7.847200 1.552100 -1.443700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -6.676000 2.319300 -2.001000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -5.453500 1.916200 -1.757800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -4.282200 2.683400 -2.315100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -3.353400 3.067700 -1.192300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -2.088200 2.732000 -1.244800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -1.159400 3.116300 -0.122000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -0.473900 1.883000 0.407300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 0.833200 1.842700 0.485300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 1.643300 3.082200 0.205400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 2.559500 3.357100 1.369900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 3.833600 3.580000 1.162600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 4.359400 3.693400 -0.245200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 5.112800 5.015600 -0.403200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 5.638600 5.129000 -1.811000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 5.431900 4.243200 -2.606300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 6.336500 6.214100 -2.181400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -16.172345 0.842320 -0.498302 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -15.603232 1.720227 -1.958475 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -14.957755 2.156237 -0.339843 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -13.885768 -0.083827 -0.163925 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -14.531211 -0.519871 -1.782531 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -13.119682 1.499253 -2.758627 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -11.697605 0.401295 -0.266603 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -9.898808 0.828932 -2.165000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -10.968751 2.137638 -2.772560 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -10.622427 3.326226 -0.416289 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -8.288009 3.099764 0.152941 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -7.480495 0.745821 -0.791442 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -8.428707 1.118750 -2.270778 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -6.847568 3.217770 -2.611996 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -5.281932 1.017729 -1.146805 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -3.742561 2.054354 -3.038350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -4.644851 3.591894 -2.818213 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -3.737825 3.630106 -0.328636 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -1.703775 2.169594 -2.108464 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.404434 3.823300 -0.496404 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -1.736751 3.590051 0.685605 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -1.070996 1.016664 0.728141 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 1.339400 0.904102 0.755104 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 2.242318 2.930945 -0.704709 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 0.966857 3.937549 0.061166 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 2.158294 3.370574 2.394035 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 4.519676 3.684398 2.016064 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 5.042077 2.855591 -0.450208 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 3.518837 3.663331 -0.954107 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 4.430091 5.853373 -0.198152 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 5.953359 5.045665 0.305712 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000012 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -18.659800 10.304400 -0.927000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -17.350700 10.256400 -1.717600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -16.185400 10.310400 -0.763600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -15.267700 9.376200 -0.797100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -14.102400 9.430200 0.157000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.024000 8.137700 0.927900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -12.906900 7.453700 0.948000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -11.654800 8.037800 0.346100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -10.536300 7.974800 1.354100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.408400 7.384600 1.044800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.289900 7.321600 2.052700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -7.874300 5.886900 2.252900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.622700 5.538100 2.085800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.207100 4.103400 2.286000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.509900 3.604800 1.046500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -4.307800 3.091300 1.132800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -3.610700 2.592600 -0.106700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -2.269900 3.268500 -0.235100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -1.183800 2.548600 -0.370600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -1.287500 1.058300 -0.568700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -0.484400 0.651100 -1.805600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -0.588000 -0.839200 -2.003700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -1.237600 -1.507200 -1.234400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 0.041300 -1.424700 -3.034700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -19.510360 10.264980 -1.623415 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -18.703783 11.237990 -0.346935 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -18.706344 9.444736 -0.242302 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.306717 9.322810 -2.297665 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -17.304126 11.116035 -2.402333 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -16.105391 11.134248 -0.039119 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.347684 8.552378 -1.521614 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -13.170994 9.576192 -0.409718 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -14.240422 10.267088 0.857406 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -14.904809 7.768600 1.473740 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -12.882820 6.453049 1.404198 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.375036 7.462172 -0.548542 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -11.837106 9.085709 0.065653 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -10.666904 8.424348 2.349514 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.277805 6.935030 0.049395 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -7.432078 7.903992 1.685331 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -8.634596 7.740447 3.009649 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -8.621933 5.132583 2.539345 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.875067 6.292417 1.799355 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.522102 4.036434 3.144076 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.097644 3.487157 2.478809 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -6.010401 3.672042 0.069270 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.807262 3.024144 2.110016 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -3.467381 1.504400 -0.034038 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -4.223895 2.823462 -0.990269 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -2.203158 4.366290 -0.215051 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -0.196166 3.031952 -0.339773 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.885735 0.542043 0.315644 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -2.342377 0.779464 -0.708292 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -0.886208 1.167327 -2.689942 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 0.570475 0.929962 -1.666052 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000013 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -11.543800 4.295800 -1.546500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -10.844500 3.314500 -0.603700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -9.953000 2.399000 -1.402700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -8.682100 2.296300 -1.102300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -7.790600 1.380800 -1.901200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -6.615800 2.161200 -2.432100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -5.394700 1.760000 -2.179000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -4.219900 2.540400 -2.709900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -3.307400 2.912400 -1.569700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -2.040100 2.583100 -1.610600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -1.127700 2.955100 -0.470500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -0.443300 1.717300 0.049700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 0.862600 1.682600 0.146500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 1.670400 2.929500 -0.106200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 2.569500 3.193300 1.074000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 3.844600 3.428400 0.886400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 4.386800 3.570000 -0.512600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 5.122500 4.879400 -0.636000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 6.352900 4.899600 -1.085300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 6.972400 3.643800 -1.642100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 7.529200 3.925800 -3.039000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 8.148700 2.670000 -3.595800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 8.145300 1.653700 -2.942400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 8.704400 2.680500 -4.817700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -12.194499 4.964021 -0.963344 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -12.150339 3.736345 -2.273907 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -10.789303 4.892510 -2.080047 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -10.237961 3.873955 0.123707 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -11.598963 2.717786 -0.070111 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -10.369467 1.817047 -2.238096 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -8.265624 2.878288 -0.266933 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -7.428629 0.566725 -1.256018 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -8.359380 0.956988 -2.741957 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -6.783627 3.067721 -3.032145 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -5.226873 0.853479 -1.578955 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -3.668105 1.924355 -3.435166 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -4.580233 3.454517 -3.204420 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -3.705556 3.460482 -0.703053 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -1.641948 2.035002 -2.477239 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -0.371276 3.670851 -0.824794 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -1.717598 3.414437 0.336364 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -1.040355 0.842957 0.348113 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 1.369645 0.743300 0.412247 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 2.282305 2.793038 -1.010053 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 0.991816 3.783505 -0.248323 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 2.155217 3.188469 2.092993 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 4.519412 3.522435 1.749989 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 5.077194 2.740138 -0.723989 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 3.555148 3.547418 -1.232215 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 4.626368 5.818214 -0.348805 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 6.933819 5.833239 -1.056123 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 7.788047 3.313551 -0.982058 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 6.208676 2.854583 -1.704245 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 6.713543 4.256057 -3.699025 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 8.292939 4.715005 -2.976881 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000014 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -19.384200 6.042500 2.524600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -18.368400 6.801900 1.668800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.472100 7.621000 2.561400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -16.171700 7.479000 2.491800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -15.275400 8.298100 3.384400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.369800 7.380800 4.165000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -13.071000 7.544400 4.115100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -12.165400 6.627000 4.895700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -11.157600 6.004200 3.964400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.876800 6.116000 4.215800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.868900 5.493200 3.284400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -7.891900 6.544900 2.825700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.604500 6.350500 2.970200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.092200 5.011900 3.435800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.039800 4.515900 2.477900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -3.851600 4.188700 2.922300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -2.799200 3.692800 1.964400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.560200 4.540300 2.096700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -0.400600 3.974400 2.323100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.274100 2.473300 2.282700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.868500 2.082900 1.343000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 0.995000 0.581800 1.302600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 0.248000 -0.105400 1.958200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 1.937600 0.008000 0.538400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -20.038420 5.444625 1.873031 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -19.991907 6.760008 3.095455 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -18.852539 5.376930 3.220554 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.760693 6.084392 1.097945 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.900021 7.467465 0.972810 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -17.909842 8.338140 3.271394 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.733958 6.761860 1.781806 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -14.667111 8.977444 2.769196 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.890464 8.886295 4.081338 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -14.799395 6.573806 4.776726 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -12.641407 8.351422 3.503409 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.640387 7.203297 5.671743 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -12.765028 5.835699 5.369292 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -11.497402 5.455712 3.073504 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.536999 6.664454 5.106718 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -8.326970 4.694329 3.811768 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -9.388331 5.069827 2.412077 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -8.259782 7.475805 2.369544 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.897434 7.164324 2.751687 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.654597 5.115769 4.439650 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -6.924017 4.292985 3.471034 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -5.269236 4.428582 1.405643 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.622185 4.275954 3.994567 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.554321 2.646248 2.198416 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -3.180335 3.758730 0.934648 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -1.629486 5.634124 2.003167 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 0.480710 4.594944 2.542684 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.062379 2.095848 3.293989 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.214943 2.035721 1.917544 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 0.656754 2.460390 0.331731 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 1.809345 2.520476 1.708155 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000015 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -6.732800 -0.095300 5.708600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -6.931700 1.239000 4.986900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -5.626600 1.991900 4.954300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -5.134600 2.400700 3.811100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -3.829600 3.153600 3.778500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -2.871800 2.458400 2.845500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -2.318700 3.122100 1.860800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -1.361000 2.426900 0.927800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -1.831000 2.598200 -0.493700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -1.026600 3.109400 -1.392500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -1.496600 3.280800 -2.814000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -1.318600 4.717600 -3.232300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -0.628300 5.006000 -4.307600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -0.450200 6.442800 -4.725800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 1.019100 6.746600 -4.866900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 1.474100 7.282200 -5.972400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 0.512500 7.750800 -7.033900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 0.805900 9.188300 -7.378200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 0.989800 9.538300 -8.627100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 0.741800 8.544500 -9.732500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 -0.229000 9.146000 -10.750700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 -0.477000 8.152200 -11.856100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 0.066900 7.073500 -11.832000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 -1.302100 8.465300 -12.867500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -7.685397 -0.644840 5.732393 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -6.391529 0.091664 6.737473 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -5.978479 -0.691994 5.174787 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -7.272971 1.052036 3.958027 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -7.686036 1.835717 5.520666 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -5.087135 2.198172 5.890478 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -5.674047 2.194396 2.874919 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -4.007060 4.179702 3.424067 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -3.398719 3.184502 4.790126 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -2.637135 1.393665 2.991350 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -2.553322 4.186849 1.714983 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -0.358329 2.865691 1.037859 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -1.321477 1.355612 1.174337 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -2.849533 2.293991 -0.776625 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -0.008044 3.413548 -1.109589 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -0.906412 2.630342 -3.476256 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -2.559812 3.007559 -2.884145 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -1.768338 5.524180 -2.634668 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -0.178646 4.199414 -4.905288 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -0.953205 6.609116 -5.689815 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -0.889720 7.103585 -3.964101 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 1.709531 6.518562 -4.041488 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 2.558010 7.389884 -6.125841 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 0.626885 7.127658 -7.933127 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -0.517915 7.666684 -6.658176 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 0.865640 9.943679 -6.580808 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 1.325246 10.557605 -8.868951 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 1.693033 8.304641 -10.230119 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 0.307527 7.626543 -9.309698 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -1.180201 9.385869 -10.253027 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 0.205278 10.063959 -11.173494 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000016 1 0.0056 0.0056 0.0000 -0.0000 -1 m_depend[6] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 r_epik_Ionization_Penalty 3 10 r_epik_Ionization_Penalty_Charging 4 10 r_epik_Ionization_Penalty_Neutral 5 10 r_epik_State_Penalty 6 10 i_epik_Tot_Q ::: } m_atom[55] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -18.500700 10.948400 2.093700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -17.915800 9.834000 2.963600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 2 -17.231100 8.818400 2.085600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 2 -15.978200 8.503400 2.302700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -15.293500 7.487800 1.424700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 2 -14.040700 8.090200 0.842700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 7 2 -12.887800 7.490500 1.007600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 3 -11.635000 8.092800 0.425600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 9 2 -10.610400 8.272200 1.516000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 10 2 -9.417400 7.746900 1.386600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 3 -8.392800 7.926300 2.477100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 12 2 -7.888200 6.576900 2.919200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -6.603600 6.320700 2.903900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 3 -6.099100 4.971300 3.346100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -5.256800 4.366800 2.252400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -4.031600 3.979500 2.507400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 3 -3.189300 3.375100 1.413700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.898200 4.142500 1.291700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 2 -0.752300 3.510200 1.349600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 20 3 -0.723200 2.003500 1.366900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 21 3 0.217000 1.499000 0.270400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 0.246100 -0.007600 0.287600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 15 -0.417100 -0.615500 1.094200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 24 18 1.008800 -0.674300 -0.593000 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 4.974 0.650 25 41 -19.000473 11.689703 2.734556 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 26 41 -19.230348 10.520072 1.390742 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 27 41 -17.691787 11.436610 1.530397 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 28 41 -17.186152 10.262328 3.666558 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 29 41 -18.724679 9.345779 3.526943 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 30 41 -17.783405 8.341600 1.262423 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 31 41 -15.425895 8.980200 3.125877 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 32 41 -15.031070 6.603095 2.023388 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 33 41 -15.970605 7.191504 0.610000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 34 41 -14.094387 9.033503 0.279408 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 35 41 -12.834108 6.547216 1.570923 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 36 41 -11.232431 7.423954 -0.349373 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 37 41 -11.870983 9.070323 -0.020226 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 38 41 -10.864304 8.844262 2.420587 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 39 41 -9.163486 7.174865 0.481999 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 40 41 -7.552522 8.525078 2.095789 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 41 41 -8.853522 8.443480 3.331653 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 42 41 -8.598616 5.807028 3.254767 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -5.893189 7.090551 2.568274 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -5.491174 5.087140 4.255499 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -6.953571 4.311719 3.557835 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -5.670822 4.250779 1.239916 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -3.617600 4.095461 3.519900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -2.970086 2.325116 1.657581 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -3.736139 3.423638 0.460489 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -1.917932 5.233671 1.154018 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 0.188533 4.079004 1.385585 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -0.364406 1.654941 2.346580 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 41 -1.736715 1.615092 1.188221 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 54 41 -0.141793 1.847647 -0.709249 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 55 41 1.230522 1.887378 0.449108 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> ::: } m_bond[108] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 25 1 3 1 26 1 4 1 27 1 5 2 1 1 6 2 3 1 7 2 28 1 8 2 29 1 9 3 2 1 10 3 4 2 11 3 30 1 12 4 3 2 13 4 5 1 14 4 31 1 15 5 4 1 16 5 6 1 17 5 32 1 18 5 33 1 19 6 5 1 20 6 7 2 21 6 34 1 22 7 6 2 23 7 8 1 24 7 35 1 25 8 7 1 26 8 9 1 27 8 36 1 28 8 37 1 29 9 8 1 30 9 10 2 31 9 38 1 32 10 9 2 33 10 11 1 34 10 39 1 35 11 10 1 36 11 12 1 37 11 40 1 38 11 41 1 39 12 11 1 40 12 13 2 41 12 42 1 42 13 12 2 43 13 14 1 44 13 43 1 45 14 13 1 46 14 15 1 47 14 44 1 48 14 45 1 49 15 14 1 50 15 16 2 51 15 46 1 52 16 15 2 53 16 17 1 54 16 47 1 55 17 16 1 56 17 18 1 57 17 48 1 58 17 49 1 59 18 17 1 60 18 19 2 61 18 50 1 62 19 18 2 63 19 20 1 64 19 51 1 65 20 19 1 66 20 21 1 67 20 52 1 68 20 53 1 69 21 20 1 70 21 22 1 71 21 54 1 72 21 55 1 73 22 21 1 74 22 23 2 75 22 24 1 76 23 22 2 77 24 22 1 78 25 1 1 79 26 1 1 80 27 1 1 81 28 2 1 82 29 2 1 83 30 3 1 84 31 4 1 85 32 5 1 86 33 5 1 87 34 6 1 88 35 7 1 89 36 8 1 90 37 8 1 91 38 9 1 92 39 10 1 93 40 11 1 94 41 11 1 95 42 12 1 96 43 13 1 97 44 14 1 98 45 14 1 99 46 15 1 100 47 16 1 101 48 17 1 102 49 17 1 103 50 18 1 104 51 19 1 105 52 20 1 106 53 20 1 107 54 21 1 108 55 21 1 ::: } }