{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 3_R_19_5_2_4 5_R_3_7_15_6 7_S_12_5_9_8 13_R_12_30_15_14 15_S_17_13_5_16 0.0097 0.0097 0.0000 0.0096 2 m_depend[11] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 r_epik_Ionization_Penalty 8 10 r_epik_Ionization_Penalty_Charging 9 10 r_epik_Ionization_Penalty_Neutral 10 10 r_epik_State_Penalty 11 10 i_epik_Tot_Q ::: } m_atom[65] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -2.953600 8.085800 -4.828300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -1.930300 8.215500 -3.698300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 -2.502900 7.602200 -2.418900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 41 -3.465600 8.090091 -2.206366 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 5 3 -1.486300 7.731800 -1.263700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 41 -0.894515 8.657397 -1.319025 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 7 3 -2.232300 7.633900 0.073300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 41 -3.235625 7.209847 -0.080053 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 9 3 -2.339400 9.005400 0.748600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 3 -1.109100 9.092100 1.669400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 3 -0.577000 7.658200 1.792100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 32 -1.419400 6.778100 0.956900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 13 3 -0.538100 5.947100 0.112100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 41 0.502549 6.093901 0.436906 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 15 3 -0.742000 6.366600 -1.350300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 41 0.211291 6.350552 -1.898915 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 17 2 -1.740100 5.446800 -2.013900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 15 -1.670400 4.236000 -2.018300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.686 2.000 19 25 -2.716000 6.161900 -2.598500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.796 0.720 20 3 -3.847800 5.578000 -3.322600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 -4.939500 5.223000 -2.346200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -5.915200 6.151600 -2.034900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 -6.918900 5.830500 -1.140200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 2 -6.949400 4.575800 -0.553300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 2 -5.966400 3.640400 -0.866900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 26 2 -4.966200 3.967600 -1.768100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 16 -6.214600 2.495300 -0.166600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -7.120700 2.876800 0.885400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 16 -7.813400 4.016800 0.343400 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 30 2 -0.896900 4.492900 0.279000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 0.102000 3.536500 0.314000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 -0.220300 2.203500 0.466100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 2 -1.556200 1.821200 0.585100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 2 -2.559100 2.789500 0.543800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 2 -2.223900 4.120000 0.397100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 -1.908900 0.392300 0.748700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 31 -0.970600 -0.510300 0.781600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 38 44 -1.232502 -1.571733 0.903122 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 39 25 -3.229600 0.017700 0.866100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 40 41 -2.541927 8.526736 -5.748137 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -3.876830 8.614814 -4.549392 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -3.177709 7.022606 -4.999747 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 -1.007070 7.686486 -3.977208 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -1.706141 9.278681 -3.526837 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -2.329074 9.793636 -0.018588 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -3.278416 9.061037 1.318822 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -0.359503 9.758658 1.217952 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -1.411609 9.490696 2.648997 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 0.465984 7.623145 1.444312 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 -0.623825 7.338419 2.843550 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -4.231163 6.306262 -4.052440 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -3.517389 4.670473 -3.849121 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -5.893500 7.129900 -2.492000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -7.679900 6.557900 -0.898900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 -4.205200 3.242600 -2.016500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 -7.801453 2.040872 1.104032 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 -6.547368 3.128878 1.789694 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 1.136100 3.833800 0.221700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 0.560300 1.457700 0.493200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 -3.595600 2.499000 0.630600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 41 -2.999300 4.871200 0.369400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 43 -3.491519 -1.043729 0.987622 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 63 43 -4.022087 0.780059 0.838306 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 64 44 0.083801 -0.211214 0.687866 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 65 44 -2.059974 6.141676 1.585095 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.838 0.900 ::: } m_bond[140] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 40 1 1 1 3 1 41 1 1 1 4 1 42 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 43 1 1 1 8 2 44 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 19 1 1 1 12 3 5 1 1 1 13 4 3 1 1 1 14 5 3 1 1 1 15 5 6 1 1 1 16 5 15 1 1 1 17 5 7 1 1 1 18 6 5 1 1 1 19 7 5 1 1 1 20 7 8 1 1 1 21 7 12 1 1 1 22 7 9 1 1 1 23 8 7 1 1 1 24 9 7 1 1 1 25 9 10 1 1 1 26 9 45 1 1 1 27 9 46 1 1 1 28 10 9 1 1 1 29 10 11 1 1 1 30 10 47 1 1 1 31 10 48 1 1 1 32 11 10 1 1 1 33 11 12 1 1 1 34 11 49 1 1 1 35 11 50 1 1 1 36 12 7 1 1 1 37 12 11 1 1 1 38 12 13 1 1 1 39 12 65 1 1 1 40 13 12 1 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 13 30 1 1 1 44 14 13 1 1 1 45 15 5 1 1 1 46 15 13 1 1 1 47 15 16 1 1 1 48 15 17 1 1 1 49 16 15 1 1 1 50 17 15 1 1 1 51 17 18 2 1 1 52 17 19 1 1 1 53 18 17 2 1 1 54 19 3 1 1 1 55 19 17 1 1 1 56 19 20 1 1 1 57 20 19 1 1 1 58 20 21 1 1 1 59 20 51 1 1 1 60 20 52 1 1 1 61 21 20 1 1 1 62 21 26 2 1 1 63 21 22 1 1 1 64 22 21 1 1 1 65 22 23 2 1 1 66 22 53 1 1 1 67 23 22 2 1 1 68 23 24 1 1 1 69 23 54 1 1 1 70 24 23 1 1 1 71 24 29 1 1 1 72 24 25 2 1 1 73 25 24 2 1 1 74 25 26 1 1 1 75 25 27 1 1 1 76 26 21 2 1 1 77 26 25 1 1 1 78 26 55 1 1 1 79 27 25 1 1 1 80 27 28 1 1 1 81 28 27 1 1 1 82 28 29 1 1 1 83 28 56 1 1 1 84 28 57 1 1 1 85 29 24 1 1 1 86 29 28 1 1 1 87 30 13 1 1 1 88 30 35 2 1 1 89 30 31 1 1 1 90 31 30 1 1 1 91 31 32 2 1 1 92 31 58 1 1 1 93 32 31 2 1 1 94 32 33 1 1 1 95 32 59 1 1 1 96 33 32 1 1 1 97 33 34 2 1 1 98 33 36 1 1 1 99 34 33 2 1 1 100 34 35 1 1 1 101 34 60 1 1 1 102 35 30 2 1 1 103 35 34 1 1 1 104 35 61 1 1 1 105 36 33 1 1 1 106 36 37 2 1 1 107 36 39 1 1 1 108 37 36 2 1 1 109 37 38 1 1 1 110 37 64 1 1 1 111 38 37 1 1 1 112 39 36 1 1 1 113 39 62 1 1 1 114 39 63 1 1 1 115 40 1 1 1 1 116 41 1 1 1 1 117 42 1 1 1 1 118 43 2 1 1 1 119 44 2 1 1 1 120 45 9 1 1 1 121 46 9 1 1 1 122 47 10 1 1 1 123 48 10 1 1 1 124 49 11 1 1 1 125 50 11 1 1 1 126 51 20 1 1 1 127 52 20 1 1 1 128 53 22 1 1 1 129 54 23 1 1 1 130 55 26 1 1 1 131 56 28 1 1 1 132 57 28 1 1 1 133 58 31 1 1 1 134 59 32 1 1 1 135 60 34 1 1 1 136 61 35 1 1 1 137 62 39 1 1 1 138 63 39 1 1 1 139 64 37 1 1 1 140 65 12 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 3_R_19_5_2_4 5_R_3_7_15_6 7_S_12_5_9_8 13_R_12_30_15_14 15_S_17_13_5_16 0.0097 0.0097 0.0000 0.0096 2 m_depend[11] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 r_epik_Ionization_Penalty 8 10 r_epik_Ionization_Penalty_Charging 9 10 r_epik_Ionization_Penalty_Neutral 10 10 r_epik_State_Penalty 11 10 i_epik_Tot_Q ::: } m_atom[65] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -1.144100 1.254200 3.660700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 -0.350600 0.776100 2.443000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 -0.851300 1.500100 1.191700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 41 -1.947208 1.410481 1.160802 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 5 3 -0.156700 0.934000 -0.066800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 41 0.053443 -0.143045 0.009454 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 7 3 -1.022600 1.212400 -1.303600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 41 -1.895091 1.825315 -1.033241 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 9 3 -1.480000 -0.099000 -1.938800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 3 -1.386000 0.207900 -3.457000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 3 -0.139300 1.124700 -3.514300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 32 -0.209300 1.943900 -2.283800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 13 3 1.143300 2.135400 -1.734500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 41 1.834441 1.435335 -2.226673 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 15 3 1.049400 1.905900 -0.217100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 41 2.014148 1.584951 0.202726 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 17 2 0.586800 3.172200 0.464700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 15 1.102800 4.261300 0.328900 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.686 2.000 19 25 -0.478900 2.918400 1.243100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.796 0.720 20 3 -1.179500 3.928400 2.040100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 -2.197100 4.630900 1.178700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 -3.486000 4.138200 1.092700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 -4.423000 4.779400 0.304200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 2 -4.072200 5.918600 -0.401900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 2 -2.773900 6.414900 -0.315300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 26 2 -1.841300 5.769800 0.480700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 16 -2.681000 7.532100 -1.094200 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 -3.817400 7.480900 -1.976800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 16 -4.792800 6.724800 -1.235100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 30 2 1.621700 3.537000 -2.013200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 0.730800 4.593700 -1.953300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 1.164100 5.880000 -2.202000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 2 2.500800 6.112200 -2.524900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 2 3.392800 5.042200 -2.589400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 2 2.948700 3.761000 -2.333500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 2.971100 7.489600 -2.797900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 31 4.220000 7.703700 -3.098800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 38 44 4.569282 8.726873 -3.301577 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 39 25 2.087400 8.544800 -2.733500 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 40 41 -0.784088 0.733639 4.560371 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 -2.211579 1.034126 3.512185 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 -1.007075 2.338538 3.784940 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 0.716879 0.996174 2.591515 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 -0.487576 -0.308242 2.318738 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 -0.807828 -0.911761 -1.626381 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 -2.505862 -0.325993 -1.613098 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 -1.259088 -0.732169 -4.013923 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 -2.308042 0.708367 -3.787715 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 0.769921 0.506065 -3.538964 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 -0.183566 1.747676 -4.419806 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 -1.688142 3.440810 2.884813 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 -0.454146 4.661570 2.422623 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 -3.761400 3.250700 1.643000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 -5.429200 4.392300 0.238900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 -0.834900 6.155000 0.553200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 -4.159831 8.503570 -2.193337 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 -3.530718 6.983816 -2.915267 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 -0.304900 4.412000 -1.707100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 0.468600 6.704600 -2.150900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 4.429200 5.216000 -2.838600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 41 3.638600 2.931600 -2.383100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 43 2.436764 9.567943 -2.936291 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 63 43 1.032548 8.364060 -2.479296 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 64 44 4.925568 6.861361 -3.150170 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 65 44 -0.650463 2.928027 -2.500291 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.838 0.900 ::: } m_bond[140] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 40 1 1 1 3 1 41 1 1 1 4 1 42 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 43 1 1 1 8 2 44 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 19 1 1 1 12 3 5 1 1 1 13 4 3 1 1 1 14 5 3 1 1 1 15 5 6 1 1 1 16 5 15 1 1 1 17 5 7 1 1 1 18 6 5 1 1 1 19 7 5 1 1 1 20 7 8 1 1 1 21 7 12 1 1 1 22 7 9 1 1 1 23 8 7 1 1 1 24 9 7 1 1 1 25 9 10 1 1 1 26 9 45 1 1 1 27 9 46 1 1 1 28 10 9 1 1 1 29 10 11 1 1 1 30 10 47 1 1 1 31 10 48 1 1 1 32 11 10 1 1 1 33 11 12 1 1 1 34 11 49 1 1 1 35 11 50 1 1 1 36 12 7 1 1 1 37 12 11 1 1 1 38 12 13 1 1 1 39 12 65 1 1 1 40 13 12 1 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 13 30 1 1 1 44 14 13 1 1 1 45 15 5 1 1 1 46 15 13 1 1 1 47 15 16 1 1 1 48 15 17 1 1 1 49 16 15 1 1 1 50 17 15 1 1 1 51 17 18 2 1 1 52 17 19 1 1 1 53 18 17 2 1 1 54 19 3 1 1 1 55 19 17 1 1 1 56 19 20 1 1 1 57 20 19 1 1 1 58 20 21 1 1 1 59 20 51 1 1 1 60 20 52 1 1 1 61 21 20 1 1 1 62 21 26 2 1 1 63 21 22 1 1 1 64 22 21 1 1 1 65 22 23 2 1 1 66 22 53 1 1 1 67 23 22 2 1 1 68 23 24 1 1 1 69 23 54 1 1 1 70 24 23 1 1 1 71 24 29 1 1 1 72 24 25 2 1 1 73 25 24 2 1 1 74 25 26 1 1 1 75 25 27 1 1 1 76 26 21 2 1 1 77 26 25 1 1 1 78 26 55 1 1 1 79 27 25 1 1 1 80 27 28 1 1 1 81 28 27 1 1 1 82 28 29 1 1 1 83 28 56 1 1 1 84 28 57 1 1 1 85 29 24 1 1 1 86 29 28 1 1 1 87 30 13 1 1 1 88 30 35 2 1 1 89 30 31 1 1 1 90 31 30 1 1 1 91 31 32 2 1 1 92 31 58 1 1 1 93 32 31 2 1 1 94 32 33 1 1 1 95 32 59 1 1 1 96 33 32 1 1 1 97 33 34 2 1 1 98 33 36 1 1 1 99 34 33 2 1 1 100 34 35 1 1 1 101 34 60 1 1 1 102 35 30 2 1 1 103 35 34 1 1 1 104 35 61 1 1 1 105 36 33 1 1 1 106 36 37 2 1 1 107 36 39 1 1 1 108 37 36 2 1 1 109 37 38 1 1 1 110 37 64 1 1 1 111 38 37 1 1 1 112 39 36 1 1 1 113 39 62 1 1 1 114 39 63 1 1 1 115 40 1 1 1 1 116 41 1 1 1 1 117 42 1 1 1 1 118 43 2 1 1 1 119 44 2 1 1 1 120 45 9 1 1 1 121 46 9 1 1 1 122 47 10 1 1 1 123 48 10 1 1 1 124 49 11 1 1 1 125 50 11 1 1 1 126 51 20 1 1 1 127 52 20 1 1 1 128 53 22 1 1 1 129 54 23 1 1 1 130 55 26 1 1 1 131 56 28 1 1 1 132 57 28 1 1 1 133 58 31 1 1 1 134 59 32 1 1 1 135 60 34 1 1 1 136 61 35 1 1 1 137 62 39 1 1 1 138 63 39 1 1 1 139 64 37 1 1 1 140 65 12 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000003 1 3_R_19_5_2_4 5_R_3_7_15_6 7_S_12_5_9_8 13_R_12_30_15_14 15_S_17_13_5_16 0.0097 0.0097 0.0000 0.0096 2 m_depend[11] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 r_epik_Ionization_Penalty 8 10 r_epik_Ionization_Penalty_Charging 9 10 r_epik_Ionization_Penalty_Neutral 10 10 r_epik_State_Penalty 11 10 i_epik_Tot_Q ::: } m_atom[65] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 3.726900 4.114100 -1.158700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 3.773600 3.267800 -2.432500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 4.709600 2.076400 -2.219100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 41 5.663176 2.450633 -1.818297 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 5 3 4.878200 1.292100 -3.534300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 41 4.868668 1.962748 -4.406160 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 7 3 6.155200 0.460400 -3.489900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 41 6.431210 0.331072 -2.432974 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 9 3 7.401400 0.973800 -4.195000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 3 8.028400 -0.315900 -4.803600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 3 6.980300 -1.437500 -4.514200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 32 5.756600 -0.683500 -4.384700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 13 3 4.495800 -1.128000 -3.860500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 41 3.959897 -1.688158 -4.640904 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 15 3 3.786400 0.171600 -3.375600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 41 2.825506 0.339159 -3.884133 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 17 2 3.593200 0.070300 -1.881000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 15 3.035600 -0.848300 -1.318700 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.686 2.000 19 25 4.120400 1.136900 -1.260700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.796 0.720 20 3 4.113500 1.334400 0.190900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 5.443200 0.913100 0.761500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 6.520600 1.777900 0.711000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 7.743800 1.393900 1.227900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 2 7.889800 0.144300 1.808200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 2 6.804600 -0.727100 1.858600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 26 2 5.583000 -0.337500 1.333800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 16 7.201600 -1.883600 2.465300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 8.640700 -1.868300 2.417800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 16 8.966700 -0.466200 2.383300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 30 2 4.711100 -2.070700 -2.704700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 4.250100 -3.372700 -2.782700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 4.449200 -4.242300 -1.729900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 2 5.106200 -3.802800 -0.580900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 2 5.563600 -2.487500 -0.506100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 2 5.363900 -1.629100 -1.567800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 5.316900 -4.728900 0.555200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 31 5.930400 -4.315600 1.627100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 38 44 6.086912 -5.003552 2.471035 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 39 25 4.863900 -6.027900 0.478300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 40 41 3.053995 4.970651 -1.312059 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 4.737600 4.479244 -0.923849 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 3.355532 3.500810 -0.324457 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 2.762900 2.902656 -2.667351 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 4.144938 3.881060 -3.266778 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 7.112282 1.703701 -4.965490 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 8.064350 1.457241 -3.462346 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 8.187155 -0.172426 -5.882587 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 8.992530 -0.520588 -4.315177 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 6.961066 -2.147014 -5.354569 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 7.257274 -1.969046 -3.591842 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 3.938133 2.396842 0.415541 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 3.313123 0.727791 0.639700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 6.407500 2.754000 0.262700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 8.585000 2.069700 1.182800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.739800 -1.011200 1.371500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 9.042383 -2.367615 3.311855 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 8.983503 -2.398098 1.516801 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 3.737300 -3.710600 -3.671100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 4.093100 -5.259900 -1.793800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 6.073400 -2.141500 0.381000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 41 5.717600 -0.610200 -1.511000 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 43 5.020420 -6.715838 1.322245 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 63 43 4.345734 -6.376998 -0.427037 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 64 44 6.292059 -3.278570 1.688506 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 65 44 5.459918 -0.638690 -5.442987 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.838 0.900 ::: } m_bond[140] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 40 1 1 1 3 1 41 1 1 1 4 1 42 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 43 1 1 1 8 2 44 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 19 1 1 1 12 3 5 1 1 1 13 4 3 1 1 1 14 5 3 1 1 1 15 5 6 1 1 1 16 5 15 1 1 1 17 5 7 1 1 1 18 6 5 1 1 1 19 7 5 1 1 1 20 7 8 1 1 1 21 7 12 1 1 1 22 7 9 1 1 1 23 8 7 1 1 1 24 9 7 1 1 1 25 9 10 1 1 1 26 9 45 1 1 1 27 9 46 1 1 1 28 10 9 1 1 1 29 10 11 1 1 1 30 10 47 1 1 1 31 10 48 1 1 1 32 11 10 1 1 1 33 11 12 1 1 1 34 11 49 1 1 1 35 11 50 1 1 1 36 12 7 1 1 1 37 12 11 1 1 1 38 12 13 1 1 1 39 12 65 1 1 1 40 13 12 1 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 13 30 1 1 1 44 14 13 1 1 1 45 15 5 1 1 1 46 15 13 1 1 1 47 15 16 1 1 1 48 15 17 1 1 1 49 16 15 1 1 1 50 17 15 1 1 1 51 17 18 2 1 1 52 17 19 1 1 1 53 18 17 2 1 1 54 19 3 1 1 1 55 19 17 1 1 1 56 19 20 1 1 1 57 20 19 1 1 1 58 20 21 1 1 1 59 20 51 1 1 1 60 20 52 1 1 1 61 21 20 1 1 1 62 21 26 2 1 1 63 21 22 1 1 1 64 22 21 1 1 1 65 22 23 2 1 1 66 22 53 1 1 1 67 23 22 2 1 1 68 23 24 1 1 1 69 23 54 1 1 1 70 24 23 1 1 1 71 24 29 1 1 1 72 24 25 2 1 1 73 25 24 2 1 1 74 25 26 1 1 1 75 25 27 1 1 1 76 26 21 2 1 1 77 26 25 1 1 1 78 26 55 1 1 1 79 27 25 1 1 1 80 27 28 1 1 1 81 28 27 1 1 1 82 28 29 1 1 1 83 28 56 1 1 1 84 28 57 1 1 1 85 29 24 1 1 1 86 29 28 1 1 1 87 30 13 1 1 1 88 30 35 2 1 1 89 30 31 1 1 1 90 31 30 1 1 1 91 31 32 2 1 1 92 31 58 1 1 1 93 32 31 2 1 1 94 32 33 1 1 1 95 32 59 1 1 1 96 33 32 1 1 1 97 33 34 2 1 1 98 33 36 1 1 1 99 34 33 2 1 1 100 34 35 1 1 1 101 34 60 1 1 1 102 35 30 2 1 1 103 35 34 1 1 1 104 35 61 1 1 1 105 36 33 1 1 1 106 36 37 2 1 1 107 36 39 1 1 1 108 37 36 2 1 1 109 37 38 1 1 1 110 37 64 1 1 1 111 38 37 1 1 1 112 39 36 1 1 1 113 39 62 1 1 1 114 39 63 1 1 1 115 40 1 1 1 1 116 41 1 1 1 1 117 42 1 1 1 1 118 43 2 1 1 1 119 44 2 1 1 1 120 45 9 1 1 1 121 46 9 1 1 1 122 47 10 1 1 1 123 48 10 1 1 1 124 49 11 1 1 1 125 50 11 1 1 1 126 51 20 1 1 1 127 52 20 1 1 1 128 53 22 1 1 1 129 54 23 1 1 1 130 55 26 1 1 1 131 56 28 1 1 1 132 57 28 1 1 1 133 58 31 1 1 1 134 59 32 1 1 1 135 60 34 1 1 1 136 61 35 1 1 1 137 62 39 1 1 1 138 63 39 1 1 1 139 64 37 1 1 1 140 65 12 1 1 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 s_st_Chirality_2 s_st_Chirality_3 s_st_Chirality_4 s_st_Chirality_5 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000004 1 3_R_19_5_2_4 5_R_3_7_15_6 7_S_12_5_9_8 13_R_12_30_15_14 15_S_17_13_5_16 0.0097 0.0097 0.0000 0.0096 2 m_depend[11] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 s_st_Chirality_2 4 10 s_st_Chirality_3 5 10 s_st_Chirality_4 6 10 s_st_Chirality_5 7 10 r_epik_Ionization_Penalty 8 10 r_epik_Ionization_Penalty_Charging 9 10 r_epik_Ionization_Penalty_Neutral 10 10 r_epik_State_Penalty 11 10 i_epik_Tot_Q ::: } m_atom[65] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge i_m_representation i_m_visibility s_m_atom_name i_m_template_index r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 3.711600 4.097100 -1.160800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 2 3 3.762900 3.253300 -2.436000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 3 3 4.716700 2.074900 -2.229700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 4 41 5.667040 2.461966 -1.833426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 5 3 4.889300 1.295200 -3.547100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 6 41 4.865582 1.967113 -4.417715 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 7 3 6.178200 0.481500 -3.511000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 8 41 6.461763 0.354279 -2.455819 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 9 3 7.413200 1.013600 -4.221700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 10 3 8.055100 -0.266200 -4.835800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 11 3 7.024500 -1.402900 -4.542900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 12 32 5.791000 -0.666400 -4.405600 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 13 3 4.539300 -1.129500 -3.875600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 14 41 4.007173 -1.695802 -4.654152 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 15 3 3.814300 0.159200 -3.384600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 16 41 2.848461 0.314107 -3.887749 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 17 2 3.630400 0.052700 -1.889200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 18 15 3.088900 -0.874600 -1.325600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 -2.686 2.000 19 25 4.145800 1.125500 -1.269800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 -2.796 0.720 20 3 4.143900 1.320400 0.182100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 21 2 5.466900 0.875700 0.750400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 22 2 6.559600 1.721000 0.697100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 23 2 7.776700 1.315400 1.212000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 24 2 7.901400 0.063800 1.793000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 25 2 6.800800 -0.787800 1.846200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 26 2 5.585400 -0.376700 1.323500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 27 16 7.178100 -1.950900 2.453100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 28 3 8.617000 -1.961500 2.402800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 29 16 8.968200 -0.565500 2.366600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 0 1 "" 0 <> <> 30 2 4.774000 -2.071000 -2.722600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 31 2 4.328600 -3.378500 -2.799300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 32 2 4.545500 -4.247000 -1.749100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 33 2 5.205500 -3.801200 -0.604300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 34 2 5.647100 -2.480400 -0.530600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 35 2 5.428900 -1.622900 -1.589500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 36 2 5.436100 -4.726400 0.528700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 0 1 "" 0 <> <> 37 31 6.052400 -4.307200 1.596700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 0 1 "" 0 <> <> 38 44 6.223689 -4.994473 2.438315 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 39 25 4.998600 -6.030700 0.453000 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 0 1 "" 0 <> <> 40 41 3.025868 4.944319 -1.309099 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 41 41 4.718398 4.476090 -0.931184 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 42 41 3.353652 3.477526 -0.325336 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 43 41 2.756102 2.874310 -2.665616 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 44 41 4.120819 3.872845 -3.271499 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 45 41 7.109735 1.740613 -4.989399 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 46 41 8.073108 1.505156 -3.491704 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 47 41 8.206160 -0.118736 -5.915353 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 48 41 9.024561 -0.458101 -4.352769 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 49 41 7.010808 -2.111170 -5.384426 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 50 41 7.313817 -1.932073 -3.622970 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 51 41 3.986744 2.385233 0.408887 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 52 41 3.333916 0.726554 0.630735 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 53 41 6.463300 2.698600 0.248300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 54 41 8.629900 1.975900 1.164700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 55 41 4.730200 -1.035000 1.363500 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 56 41 9.011392 -2.467307 3.296452 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 57 41 8.948465 -2.498025 1.501539 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 58 41 3.814000 -3.721500 -3.684700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 59 41 4.200900 -5.268600 -1.811700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 60 41 6.159200 -2.129600 0.353200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 61 41 5.770500 -0.599800 -1.533600 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 <> <> 62 43 5.169878 -6.717991 1.294602 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 63 43 4.478034 -6.384728 -0.449039 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 64 44 6.401645 -3.265866 1.657130 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 10.585 0.700 65 44 5.488121 -0.623964 -5.462228 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 0 1 "" 0 8.838 0.900 ::: } m_bond[140] { # First column is bond index # i_m_from i_m_to i_m_order i_m_from_rep i_m_to_rep ::: 1 1 2 1 1 1 2 1 40 1 1 1 3 1 41 1 1 1 4 1 42 1 1 1 5 2 1 1 1 1 6 2 3 1 1 1 7 2 43 1 1 1 8 2 44 1 1 1 9 3 2 1 1 1 10 3 4 1 1 1 11 3 19 1 1 1 12 3 5 1 1 1 13 4 3 1 1 1 14 5 3 1 1 1 15 5 6 1 1 1 16 5 15 1 1 1 17 5 7 1 1 1 18 6 5 1 1 1 19 7 5 1 1 1 20 7 8 1 1 1 21 7 12 1 1 1 22 7 9 1 1 1 23 8 7 1 1 1 24 9 7 1 1 1 25 9 10 1 1 1 26 9 45 1 1 1 27 9 46 1 1 1 28 10 9 1 1 1 29 10 11 1 1 1 30 10 47 1 1 1 31 10 48 1 1 1 32 11 10 1 1 1 33 11 12 1 1 1 34 11 49 1 1 1 35 11 50 1 1 1 36 12 7 1 1 1 37 12 11 1 1 1 38 12 13 1 1 1 39 12 65 1 1 1 40 13 12 1 1 1 41 13 14 1 1 1 42 13 15 1 1 1 43 13 30 1 1 1 44 14 13 1 1 1 45 15 5 1 1 1 46 15 13 1 1 1 47 15 16 1 1 1 48 15 17 1 1 1 49 16 15 1 1 1 50 17 15 1 1 1 51 17 18 2 1 1 52 17 19 1 1 1 53 18 17 2 1 1 54 19 3 1 1 1 55 19 17 1 1 1 56 19 20 1 1 1 57 20 19 1 1 1 58 20 21 1 1 1 59 20 51 1 1 1 60 20 52 1 1 1 61 21 20 1 1 1 62 21 26 2 1 1 63 21 22 1 1 1 64 22 21 1 1 1 65 22 23 2 1 1 66 22 53 1 1 1 67 23 22 2 1 1 68 23 24 1 1 1 69 23 54 1 1 1 70 24 23 1 1 1 71 24 29 1 1 1 72 24 25 2 1 1 73 25 24 2 1 1 74 25 26 1 1 1 75 25 27 1 1 1 76 26 21 2 1 1 77 26 25 1 1 1 78 26 55 1 1 1 79 27 25 1 1 1 80 27 28 1 1 1 81 28 27 1 1 1 82 28 29 1 1 1 83 28 56 1 1 1 84 28 57 1 1 1 85 29 24 1 1 1 86 29 28 1 1 1 87 30 13 1 1 1 88 30 35 2 1 1 89 30 31 1 1 1 90 31 30 1 1 1 91 31 32 2 1 1 92 31 58 1 1 1 93 32 31 2 1 1 94 32 33 1 1 1 95 32 59 1 1 1 96 33 32 1 1 1 97 33 34 2 1 1 98 33 36 1 1 1 99 34 33 2 1 1 100 34 35 1 1 1 101 34 60 1 1 1 102 35 30 2 1 1 103 35 34 1 1 1 104 35 61 1 1 1 105 36 33 1 1 1 106 36 37 2 1 1 107 36 39 1 1 1 108 37 36 2 1 1 109 37 38 1 1 1 110 37 64 1 1 1 111 38 37 1 1 1 112 39 36 1 1 1 113 39 62 1 1 1 114 39 63 1 1 1 115 40 1 1 1 1 116 41 1 1 1 1 117 42 1 1 1 1 118 43 2 1 1 1 119 44 2 1 1 1 120 45 9 1 1 1 121 46 9 1 1 1 122 47 10 1 1 1 123 48 10 1 1 1 124 49 11 1 1 1 125 50 11 1 1 1 126 51 20 1 1 1 127 52 20 1 1 1 128 53 22 1 1 1 129 54 23 1 1 1 130 55 26 1 1 1 131 56 28 1 1 1 132 57 28 1 1 1 133 58 31 1 1 1 134 59 32 1 1 1 135 60 34 1 1 1 136 61 35 1 1 1 137 62 39 1 1 1 138 63 39 1 1 1 139 64 37 1 1 1 140 65 12 1 1 1 ::: } }