{ s_m_m2io_version ::: 2.0.0 } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000001 1 5_S_9_7_2_6 0.0004 0.0003 0.0000 -0.0000 0 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[70] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -6.042900 -3.611100 5.350000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -6.249500 -4.238400 3.969900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -7.570500 -5.010200 3.953000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 3 -5.095400 -5.196200 3.667000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -6.289200 -3.136300 2.909400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 41 -6.293572 -3.570909 1.898907 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 7 3 -7.527500 -2.264200 3.126400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 16 -7.504300 -1.724800 4.449600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -1.910 1.000 9 25 -5.084600 -2.309800 3.018800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 10 2 -4.634400 -1.629500 1.945900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 15 -5.228000 -1.701700 0.887500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -1.768 2.000 12 2 -3.419500 -0.795900 2.056200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -2.737200 -0.714100 3.274700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 -1.600800 0.055400 3.384300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -1.128500 0.768500 2.283100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -1.810100 0.691200 1.052400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 2 -2.955300 -0.093100 0.946200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.312700 1.438600 -0.118300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 15 -0.313200 2.122700 -0.022500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 20 18 -1.966900 1.362600 -1.293800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 3.749 0.500 21 2 0.088900 1.599300 2.405000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 1.331300 1.007500 2.667600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 2.440000 1.823300 2.766500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 2 2.293600 3.200900 2.609700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 25 25 1.112100 3.737000 2.368300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 0.168 0.350 26 2 0.017500 2.994300 2.264500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 2 -1.286200 3.640100 1.992900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 28 15 -2.291300 2.963500 1.897100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 29 25 -1.358800 4.978400 1.851700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 30 2 -2.568000 5.578000 1.500000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 31 2 -3.437000 4.929400 0.628900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 32 2 -4.634400 5.516700 0.284400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 33 2 -4.970500 6.768900 0.801700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 34 2 -4.093900 7.420200 1.671300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 35 2 -2.900200 6.826000 2.016600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 36 2 -6.252800 7.404800 0.428800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 37 31 -6.565300 8.574100 0.912100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 38 44 -7.518979 9.046899 0.634688 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 39 25 -7.117300 6.760700 -0.429900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 40 16 3.382800 4.002800 2.706300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 41 3 3.172400 5.406000 2.536800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 42 41 -5.093172 -3.056240 5.362089 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -6.014345 -4.403540 6.112380 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -6.872655 -2.922544 5.567708 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.718982 -5.461178 2.960744 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -8.400245 -4.321634 4.170717 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -7.541934 -5.802631 4.715389 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -5.243999 -5.647165 2.674756 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -5.066871 -5.988631 4.429390 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -4.145666 -4.641350 3.679104 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -7.529780 -1.442279 2.395346 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -8.433303 -2.874317 2.994955 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 42 -8.318584 -1.068407 4.790321 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 14.718 0.800 54 43 -4.547551 -2.244435 3.976561 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.529 2.000 55 41 -3.101200 -1.260400 4.132300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -1.076200 0.110200 4.326800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -3.482400 -0.157100 0.005700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 1.420100 -0.062400 2.785400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 3.413000 1.398100 2.964100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 43 -0.464396 5.597882 2.013823 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.820 2.000 61 41 -3.174700 3.962400 0.225800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 62 41 -5.310900 5.010500 -0.388300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 63 41 -4.351700 8.388900 2.073200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 64 41 -2.221700 7.329500 2.689300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 65 43 -8.070961 7.233564 -0.707265 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 66 43 -6.853605 5.773774 -0.837872 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 67 41 4.131166 5.935474 2.638909 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 68 41 2.470817 5.766779 3.303364 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 69 41 2.753265 5.595841 1.537657 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 70 44 -5.875382 9.088231 1.597434 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 ::: } m_bond[144] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 42 1 3 1 43 1 4 1 44 1 5 2 1 1 6 2 3 1 7 2 4 1 8 2 5 1 9 3 2 1 10 3 45 1 11 3 46 1 12 3 47 1 13 4 2 1 14 4 48 1 15 4 49 1 16 4 50 1 17 5 2 1 18 5 6 1 19 5 7 1 20 5 9 1 21 6 5 1 22 7 5 1 23 7 8 1 24 7 51 1 25 7 52 1 26 8 7 1 27 8 53 1 28 9 5 1 29 9 10 1 30 9 54 1 31 10 9 1 32 10 11 2 33 10 12 1 34 11 10 2 35 12 10 1 36 12 17 2 37 12 13 1 38 13 12 1 39 13 14 2 40 13 55 1 41 14 13 2 42 14 15 1 43 14 56 1 44 15 14 1 45 15 16 2 46 15 21 1 47 16 15 2 48 16 17 1 49 16 18 1 50 17 12 2 51 17 16 1 52 17 57 1 53 18 16 1 54 18 19 2 55 18 20 1 56 19 18 2 57 20 18 1 58 21 15 1 59 21 26 2 60 21 22 1 61 22 21 1 62 22 23 2 63 22 58 1 64 23 22 2 65 23 24 1 66 23 59 1 67 24 23 1 68 24 25 2 69 24 40 1 70 25 24 2 71 25 26 1 72 26 21 2 73 26 25 1 74 26 27 1 75 27 26 1 76 27 28 2 77 27 29 1 78 28 27 2 79 29 27 1 80 29 30 1 81 29 60 1 82 30 29 1 83 30 35 2 84 30 31 1 85 31 30 1 86 31 32 2 87 31 61 1 88 32 31 2 89 32 33 1 90 32 62 1 91 33 32 1 92 33 34 2 93 33 36 1 94 34 33 2 95 34 35 1 96 34 63 1 97 35 30 2 98 35 34 1 99 35 64 1 100 36 33 1 101 36 37 2 102 36 39 1 103 37 36 2 104 37 38 1 105 37 70 1 106 38 37 1 107 39 36 1 108 39 65 1 109 39 66 1 110 40 24 1 111 40 41 1 112 41 40 1 113 41 67 1 114 41 68 1 115 41 69 1 116 42 1 1 117 43 1 1 118 44 1 1 119 45 3 1 120 46 3 1 121 47 3 1 122 48 4 1 123 49 4 1 124 50 4 1 125 51 7 1 126 52 7 1 127 53 8 1 128 54 9 1 129 55 13 1 130 56 14 1 131 57 17 1 132 58 22 1 133 59 23 1 134 60 29 1 135 61 31 1 136 62 32 1 137 63 34 1 138 64 35 1 139 65 39 1 140 66 39 1 141 67 41 1 142 68 41 1 143 69 41 1 144 70 37 1 ::: } } f_m_ct { s_m_title r_lp_tautomer_probability s_st_Chirality_1 r_epik_Ionization_Penalty r_epik_Ionization_Penalty_Charging r_epik_Ionization_Penalty_Neutral r_epik_State_Penalty i_epik_Tot_Q ::: TEMP00000002 1 5_S_9_7_2_6 0.0004 0.0003 0.0000 -0.0000 0 m_depend[7] { # First column is dependency index # i_m_depend_dependency s_m_depend_property ::: 1 10 r_lp_tautomer_probability 2 10 s_st_Chirality_1 3 10 r_epik_Ionization_Penalty 4 10 r_epik_Ionization_Penalty_Charging 5 10 r_epik_Ionization_Penalty_Neutral 6 10 r_epik_State_Penalty 7 10 i_epik_Tot_Q ::: } m_atom[70] { # First column is atom index # i_m_mmod_type r_m_x_coord r_m_y_coord r_m_z_coord i_m_residue_number s_m_insertion_code s_m_mmod_res s_m_chain_name i_m_color r_m_charge1 r_m_charge2 s_m_pdb_residue_name s_m_pdb_atom_name s_m_grow_name i_m_atomic_number i_m_formal_charge s_m_atom_name r_epik_H2O_pKa r_epik_H2O_pKa_uncertainty ::: 1 3 -6.042900 -3.611100 5.350000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 2 3 -6.249500 -4.238400 3.969900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 3 3 -7.570500 -5.010200 3.953000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 4 3 -5.095400 -5.196200 3.667000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 5 3 -6.289300 -3.136300 2.909400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 6 41 -6.293890 -3.570909 1.898908 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 7 3 -7.527500 -2.264200 3.126400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 8 16 -7.504400 -1.724800 4.449600 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -1.910 1.000 9 25 -5.084600 -2.309800 3.018800 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 10 2 -4.634500 -1.629500 1.945900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 11 15 -5.228000 -1.701700 0.887500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" -1.768 2.000 12 2 -3.419500 -0.795900 2.056200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 13 2 -2.737200 -0.714100 3.274700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 14 2 -1.600800 0.055400 3.384300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 15 2 -1.128500 0.768500 2.283100 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 16 2 -1.810100 0.691200 1.052400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 17 2 -2.955300 -0.093100 0.946200 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 18 2 -1.312700 1.438600 -0.118300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 19 15 -0.313200 2.122700 -0.022500 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 20 18 -1.966900 1.362600 -1.293800 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 -1 "" 3.749 0.500 21 2 0.088900 1.599300 2.405000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 22 2 1.331300 1.007500 2.667600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 23 2 2.440000 1.823300 2.766500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 24 2 2.293600 3.200900 2.609700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 25 25 1.112100 3.737000 2.368300 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" 0.168 0.350 26 2 0.017500 2.994300 2.264500 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 27 2 -1.286200 3.640100 1.992900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 28 15 -2.291300 2.963500 1.897100 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 29 25 -1.358800 4.978400 1.851700 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 30 2 -2.568000 5.578000 1.500000 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 31 2 -3.437000 4.929400 0.628900 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 32 2 -4.634400 5.516700 0.284400 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 33 2 -4.970500 6.768900 0.801700 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 34 2 -4.093900 7.420200 1.671300 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 35 2 -2.900200 6.826000 2.016600 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 36 2 -6.252800 7.404800 0.428800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 37 31 -6.565300 8.574100 0.912100 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 1 "" <> <> 38 44 -7.518979 9.046899 0.634688 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 39 25 -7.117300 6.760700 -0.429900 900 " " X " " 43 0.00000 0.00000 "UNK " " " " " 7 0 "" <> <> 40 16 3.382800 4.002800 2.706300 900 " " X " " 70 0.00000 0.00000 "UNK " " " " " 8 0 "" <> <> 41 3 3.172400 5.406000 2.536800 900 " " X " " 2 0.00000 0.00000 "UNK " " " " " 6 0 "" <> <> 42 41 -5.093172 -3.056240 5.362089 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 43 41 -6.014345 -4.403540 6.112380 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 44 41 -6.872655 -2.922544 5.567708 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 45 41 -7.718982 -5.461178 2.960744 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 46 41 -8.400245 -4.321634 4.170717 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 47 41 -7.541934 -5.802631 4.715389 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 48 41 -5.243999 -5.647165 2.674756 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 49 41 -5.066871 -5.988631 4.429390 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 50 41 -4.145666 -4.641350 3.679104 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 51 41 -7.529730 -1.442250 2.395378 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 52 41 -8.433328 -2.874272 2.994914 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 53 42 -8.318700 -1.068393 4.790254 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 14.718 0.800 54 43 -4.547506 -2.244508 3.976540 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 12.529 2.000 55 41 -3.101200 -1.260400 4.132300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 56 41 -1.076400 0.110500 4.326900 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 57 41 -3.482400 -0.157100 0.005700 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 58 41 1.420000 -0.062400 2.785400 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 59 41 3.413000 1.398100 2.964100 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 60 43 -0.464396 5.597882 2.013823 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.820 2.000 61 41 -3.174700 3.962400 0.225800 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 62 41 -5.310900 5.010500 -0.388300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 63 41 -4.351700 8.388900 2.073200 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 64 41 -2.221700 7.329500 2.689300 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 65 43 -8.070961 7.233564 -0.707265 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 66 43 -6.853605 5.773774 -0.837872 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 67 41 4.131166 5.935474 2.638909 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 68 41 2.470817 5.766779 3.303364 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 69 41 2.753265 5.595841 1.537657 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" <> <> 70 44 -5.875382 9.088231 1.597434 900 " " X " " 21 0.00000 0.00000 "UNK " " " " " 1 0 "" 11.144 0.700 ::: } m_bond[144] { # First column is bond index # i_m_from i_m_to i_m_order ::: 1 1 2 1 2 1 42 1 3 1 43 1 4 1 44 1 5 2 1 1 6 2 3 1 7 2 4 1 8 2 5 1 9 3 2 1 10 3 45 1 11 3 46 1 12 3 47 1 13 4 2 1 14 4 48 1 15 4 49 1 16 4 50 1 17 5 2 1 18 5 6 1 19 5 7 1 20 5 9 1 21 6 5 1 22 7 5 1 23 7 8 1 24 7 51 1 25 7 52 1 26 8 7 1 27 8 53 1 28 9 5 1 29 9 10 1 30 9 54 1 31 10 9 1 32 10 11 2 33 10 12 1 34 11 10 2 35 12 10 1 36 12 17 2 37 12 13 1 38 13 12 1 39 13 14 2 40 13 55 1 41 14 13 2 42 14 15 1 43 14 56 1 44 15 14 1 45 15 16 2 46 15 21 1 47 16 15 2 48 16 17 1 49 16 18 1 50 17 12 2 51 17 16 1 52 17 57 1 53 18 16 1 54 18 19 2 55 18 20 1 56 19 18 2 57 20 18 1 58 21 15 1 59 21 26 2 60 21 22 1 61 22 21 1 62 22 23 2 63 22 58 1 64 23 22 2 65 23 24 1 66 23 59 1 67 24 23 1 68 24 25 2 69 24 40 1 70 25 24 2 71 25 26 1 72 26 21 2 73 26 25 1 74 26 27 1 75 27 26 1 76 27 28 2 77 27 29 1 78 28 27 2 79 29 27 1 80 29 30 1 81 29 60 1 82 30 29 1 83 30 35 2 84 30 31 1 85 31 30 1 86 31 32 2 87 31 61 1 88 32 31 2 89 32 33 1 90 32 62 1 91 33 32 1 92 33 34 2 93 33 36 1 94 34 33 2 95 34 35 1 96 34 63 1 97 35 30 2 98 35 34 1 99 35 64 1 100 36 33 1 101 36 37 2 102 36 39 1 103 37 36 2 104 37 38 1 105 37 70 1 106 38 37 1 107 39 36 1 108 39 65 1 109 39 66 1 110 40 24 1 111 40 41 1 112 41 40 1 113 41 67 1 114 41 68 1 115 41 69 1 116 42 1 1 117 43 1 1 118 44 1 1 119 45 3 1 120 46 3 1 121 47 3 1 122 48 4 1 123 49 4 1 124 50 4 1 125 51 7 1 126 52 7 1 127 53 8 1 128 54 9 1 129 55 13 1 130 56 14 1 131 57 17 1 132 58 22 1 133 59 23 1 134 60 29 1 135 61 31 1 136 62 32 1 137 63 34 1 138 64 35 1 139 65 39 1 140 66 39 1 141 67 41 1 142 68 41 1 143 69 41 1 144 70 37 1 ::: } }